期刊文献+

不同斜腔角驱动流的非结构网格研究

Study on Unstructured Grids of Inclined Cavity Driven Flow with Different Angles
下载PDF
导出
摘要 在雷诺数100和1000两种情况下,使用非结构网格技术对15°~165°斜腔驱动流问题进行了数值模拟。首先与已有的文献结果进行了对比,当使用网格数为文献1/7网格数时,模拟结果与文献符合的很好,表明非结构网格对于只能用非正交结构网格求解的问题有很大的优越性。然后对大斜角斜腔的驱动流场进行了预测。结果能为不同斜腔角的流场研究提供参考,并对工业类似结构的设计有一定的借鉴意义。 The inclined cavity driven flow with inclined cavity angles of 15°-165° is numerically simulated by using unstructured grid method at Reynolds number of 100 and 1000. First, its results are compared with the existing literature results. When using the grid number is 1/7 grid number of reference literature, the simulation results are in good agreement with results of literature. It indicates that the unstructured grid has great advantage for problems that can only be solved with non-orthogonal structured grids. Then, the driven flow filed of inclined cavity with large angle is predicted. The results can provide a reference for flow field study of different inclined cavity angles and has the certain significance for the design of similar industrial structures.
出处 《机电设备》 2015年第3期38-45,共8页 Mechanical and Electrical Equipment
关键词 非结构网格 阵面推进法 SIMPLE算法 斜腔驱动流 unstructured grid advancing front method SIMPLE algorithm inclined cavity drivenflow
  • 相关文献

参考文献23

  • 1Burggraf 0 R. Analytical and numerical studies ofthe structure of steady separated flows[J]. J. of Fluid Mech., 1966, 24: 113-151.
  • 2Gupta M M, Manohar R P, Noble B. Nature of viscous flows near sharp corners[J]. Comput. Fluids 1981, 9: 379-388.
  • 3Ghia U, Ghia K N, Shin C T. High-Re solutions for incompressible flow using Navier-Stokes equations and a multigrid method[J]. J. Comp. Phys, 1982, 48(3):387-411.
  • 4Botella O, Peyret R. Benchmark spectral results on the lid-driven cavity flow[J]. Comput. Fluids, 1998, 27(4): 421-433.
  • 5Tezduyar T E. Stabilized finite element formulations for incompressible flow computations[J]. Adv. Appl. Mech.,1992, 28: 1-44.
  • 6Stortkuhl T, Zenger C, Zimmer S. An asymptotic solution for the singularity at the angular point of the lid driven cavity[J]. Int. J. Numer. Meth. Heat & Fluid Flow, 1994, 4, 47-59.
  • 7Li M, Tang T, Fornberg B. A compact fourth-order finite difference scheme for the steady incompressible Navier-Stokes equations[J]. Int. J. Numer. Meth. Fluids, 1995, 20, 1137-1151.
  • 8Tucker P G~ Pan Z. A cartesian cut cell method for incompressible viscous flow[J]. Appl. Math. Mod., 2000, 24: 591-606.
  • 9Bruneau C H, Saad M. The 2D lid-driven cavity problem revisited [J]. Comp. Fluids, 2005, 35(3): 326-348.
  • 10Demirdzic, Lilek Z, Peric M. Fluid flow and heat transfer test problems for non orthogonal grids: benchmark solutions[J]. Int. J. Numer. Methods Fluids, 1992, 15(3): 329-354.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部