期刊文献+

基于国产六面顶压机的二级6-8型大腔体静高压装置(上) 被引量:2

Two stage 6-8 Type Large Cavity Static High Pressure Device Based on the Domestic Cubic Press
下载PDF
导出
摘要 主要介绍基于国产六面顶压机构建的二级6-8型大腔体静高压装置的力学结构,压力标定,加热组装设计,温度标定,以及采用金刚石复合材料作为二级顶锤产生超高压的一些探索性工作。一系列的结果表明,基于六面顶压机的二级增压装置的研发成功,促进了国内高压科学与技术及新型超硬材料的发展。实验表明,自行研制的多晶金刚石-硬质合金复合末级压砧可使基于国产六面项压机构架的二级加压系统的压力产生上限从约20 GPa提高到35 GPa以上,拓展了国内大腔体静高压技术的压力产生范围。应用这一技术,我们期望经过末级压砧材料与压腔设计的进一步优化,在基于国产六面顶压机的二级6-8型大腔体静高压装置压腔中产生超过50 GPa的高压。 The mechanical structure,pressure calibration,heating assembly design and temperature calibration of two stage 6-8 type large cavity static high pressure device based on the domestic cubic press are introduced in this article.Some exploratory work to ob-tain ultrahigh pressure by using PDC as two-stage anvils has also been conducted.A se-ries of results show that the successful development of the two stage 6-8 type large cavity static high pressure device based on the domestic cubic press promotes the development of domestic high pressure science and technology and the new type of superhard materials. Experiment shows that the self developed polycrystalline diamond-cemented carbide com-posite end-stage anvil can increase the press generation limit of the two stage 6-8 type large cavity static high pressure device based on the domestic cubic press from around 20 GPa to over 35 GPa.Therefore,the press generation range of domestic large cavity static high pressure device has been expanded.We are expecting to furthter potimize the end-stage anvil materail and the pressure cavity design to generate high press of 50 GPa in the two stage 6-8 type large cavity static high pressure device based on the domestic cubic press through application of this technique.
出处 《超硬材料工程》 CAS 2015年第2期6-10,共5页 Superhard Material Engineering
关键词 六面顶压机 综述 压力标定 金刚石顶锤 35 GPA cubic press pressure calibration diamond anvil 35 GPa
  • 相关文献

参考文献3

二级参考文献71

  • 1王福龙 贺端威 房雷鸣 陈晓芳 李拥军 张伟 张剑 寇自力 彭放.物理学报,2008,57:5429-5429.
  • 2Sung C M 1997 High Temp. -High Pressure 29 253.
  • 3Greene R G, Luo H, Ruoff A L 1994 Phys. Rev. Lett. 73 2075.
  • 4Singh A K, Liermann H P, Akahama Y, Saxena S K, Menendez-Proupin E 2007 J. Appl. Phys. 101 123526.
  • 5Jayaraman A 1986 Rev. Sci. Instrum. 57 1013.
  • 6Andrauh D, Fiquet G 2001 Rev. Sci. Instrum. 72 1283.
  • 7Peiris S M, Butcher R, Pearson W 2005 Joint 20th AIRAPT - 43th EHPRG Karlsruhe/Germany,June 27 July 1,2005.
  • 8Klotz S, Besson J M, Hamel G, Nelmes R J, Loveday J S, Marshall W G, Wilson R M 1995 Appl. Phys. Lett. 66 1735.
  • 9Khvostantsev L G 1984 High Temp. -High Pressure 16 165.
  • 10Zhao Y S, He D W, Jiang Q, Pantea C, Lokshin K A, Zhang J Z, Daemen L L 2005 Advances in High-Pressure Technology for Geophysical Applications ( Elsevier B. V. ) p461.

共引文献25

同被引文献8

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部