期刊文献+

基于循环神经网络的汉语语言模型并行优化算法 被引量:7

Parallel Optimization of Chinese Language Model Based on Recurrent Neural Network
下载PDF
导出
摘要 计算复杂度高导致循环神经网络语言模型训练效率很低,是影响实际应用的一个瓶颈.针对这个问题,提出一种基于批处理(mini-batch)的并行优化训练算法.该算法利用GPU的强大计算能力来提高网络训练时的矩阵及向量运算速度,优化后的网络能同时并行处理多个数据流即训练多个句子样本,加速训练过程.实验表明,优化算法有效提升了RNN语言模型训练速率,且模型性能下降极少,并在实际汉语语音识别系统中得到了验证. High computational complexity leads to low efficiency in training a recurrent neural network (RNN) language model. This becomes a major bottleneck in practical ap- plications. To deal with this problem, this paper proposes a parallel optimization algorithm to speed up matrix and vector operations by taking the advantage of CPU's computational capability. The optimized network can handle multiple data streams in parallel and train several sentence samples simultaneously so that the training process is significantly acceler- ated. Experimental results show that the model training of RNN is speeded up effectively without noticeable sacrifice of model performance. The algorithm is verified in an actual Chinese speech recognition system.
出处 《应用科学学报》 CAS CSCD 北大核心 2015年第3期253-261,共9页 Journal of Applied Sciences
基金 国家自然科学基金(No.60872113) 安徽省自然科学基金(No.1208085MF94)资助
关键词 语音识别 循环神经网络 语言模型 并行优化 speech recognition, recurrent neural network, language model, parallel opti-mization
  • 相关文献

参考文献11

  • 1倪崇嘉,刘文举,徐波.汉语大词汇量连续语音识别系统研究进展[J].中文信息学报,2009,23(1):112-123. 被引量:39
  • 2Xu W, RUDNICKY A. Can artificial neural networks learn models? [C]// International Confer- ence on Statistical Language Processing, 2000.
  • 3MIKOLOV T, KARAFfAT M, BURGET L, CERNOCKr J, KHUDANPUR S. Recurrent neural network based language model [C]// Proceedings of Interspeech, 2010: 1045-1048.
  • 4MIKOLOV W. Statistical language models based on neural networks [D]. Brno University of Tech- nology, Czech Republic, 2012.
  • 5MIKOLOV T, DEORAS A, POVERY D. Strategies for training large scale neural network language models [C]// Automatic Speech Recognition and Understanding, 2011: 196-201.
  • 6KOMBRINK S, MIKOLOV T, KARAFAT M, BURGET L. Recurrent neural network based language modeling in meeting recognition [C]// Proceedings of Interspeech, 2011: 2877-2880.
  • 7YAO K S, ZWEIG G, HWANG M Y, SHI Y Y, Yu D. Recurrent neural network for language understanding [C]//Proceedings of Interspeech, 2013.
  • 8MNIH V. Cudamat: a CUDA-based matrix class for python [R]. UTML TR 2009-004, Depart- ment of Computer Science, University of Toronto, November 2009.
  • 9SHALEV-SHWARTZ S, ZHANG T. Accelerated mini-batch stochastic dual coordinate ascent, axXiv, 2013.
  • 10DEKEL O, GILAD-BACHRACH R, SHAMIR 0, XIAO L. Optimal distributed online prediction using mini-batches [J]. The Journal of Machine Learning Research, 2012, 13: 165-202.

二级参考文献80

  • 1钱跃良,林守勋,刘群,刘宏.2005年度863计划中文信息处理与智能人机接口技术评测回顾[J].中文信息学报,2006,20(B03):1-6. 被引量:4
  • 2Zhang, B., S. Matsoukas and R. Schwartz. Discrimina tively trained region dependent teature transforms for speech recognition [C]// Proc. ICASSP, Vol. 1-13, 2006: 313-316.
  • 3Beyerlein, P., et al., Large vocabulary continuous speech recognition of Broadcast News - The Philips/ RWTH approach[J]. Speech Communication, 2002, 37(1-2): 109- 131.
  • 4Hain, T., et al., Automatic transcription of conversational telephone speech [C]// IEEE Transactions on Speech and Audio Processing, 2005, 13(6): 1173-1185.
  • 5Zhang, B. and S. Matsoukas, Minimum phoneme error based heteroscedastic linear discriminant analy sis for speech recognition[C]// Proc. ICASSP, Vol. 1-5, 2005: 1925-1928.
  • 6Hirsimaki, T., et al., Unlimited vocabulary speech recognition with morph language models applied to Finnish[J]. Computer Speech and Language, 2006, 20(4) : 515-541.
  • 7Odell, J.J., The Use of Context in Large Vocabulary Speech Recognition[D]. 1995, University of Cambridge :Cambridge
  • 8Young, S.J., J.J. Odell, and P. C. Woodland. Tree-Based State Tying for High Accuracy Modelling [C]// Proceedings ARPA Workshop on Human Language Technology. 1994.
  • 9Xu, B., et al., Integrating tone information in continuous Mandarin recognition[C]// Proc. ISSPIS, 1999.
  • 10Seneff, C. W. a.S. A study of tones and tempo in continuous mandarin digit strings and their application in telephone quality speech recognition[C]// Proc. ICSLP. 1998.

共引文献38

同被引文献61

引证文献7

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部