摘要
在研究了Rn空间上二次函数切平面的一个重要性的基础上,进一步研究其反问题,即证明了定义于Rn空间上的任意一个纯量函数f(x),如果它在点x1和x2处切平面的交线始终包含连接点x1和x2线段的中点,那么f(x)必为二次函数.
The author studied an important property of quadratic function on the tangent plane in n-dimensional Euclidean space. This result published on journal of Kashgar Teachers College in 2012,33(6),and its title was“The property on Tangent Planes of a Quadratic Funcion in Rn”.In this paper,we further its inverse problem, that it is proved that a scalar-valued function f(x) defined in n-dimensional Euclidean space must be quadratic,if the intersection of tangent planes x1 and x2 always contains the midpoint of the line joining x1 and x2 .
出处
《喀什师范学院学报》
2015年第3期3-3,共1页
Journal of Kashgar Teachers College
关键词
n-维欧式空间
二次函数
切平面
向量函数的微分
反问题
n-dimensional Euclidean space
Quadratic function
Differentiator of vector function
The inverse problem