期刊文献+

细菌降解木质素的研究进展 被引量:34

Exploring the lignin degradation by bacteria
原文传递
导出
摘要 木质素是自然界最丰富的芳香化合物,其分解与陆地上碳循环密切相关。提取木质纤维素中的葡萄糖使其转化成乙醇,是生产第二代生物能源的关键步骤。但是由于木质素是一种非常稳定的化合物,难以降解是实现生物乙醇转化的主要屏障,因此关于木质素的生物降解研究具有非常重要的意义。真菌降解木质素的研究已经深入的进行了多年,并取得丰富的成果,但是关于细菌降解木质素的研究还处在初级阶段。由于广泛的生长条件和良好的环境适应能力,细菌在木质素降解方面深受研究人员的关注。本文通过总结前人的研究成果,讨论了木质素的降解机制、代谢途径及细菌降解木质素的工业应用前景,同时还展望了分子生物学及生物信息学在木质素降解方面的应用前景。 Lignin as the most abundant aromatic compounds, its decomposition is closely related to the carbon cycle. The bio-conversion of lignocellulose to glucose is an important part of second generation biofuel production, but the resistance of lignin to breakdown is a bottleneck in this process, hence there is considerable interest in the microbial breakdown of lignin. The degradation of lignin by fungi has been well studied, but it is still not clear in bacteria. Recently, many researchers focus on the lignin degradation by bacteria, because a wide range of growth conditions and good environment adaptability for bacteria. In addition, the rapidly development of omics technique such as gemome, transcriptome, proteome and metabolomics promoted the study on the bacterial degradation of lignin. This review introduced the recent research about the diversity of bacteria in lignin degradation, the lignin metabolism pathway and involved enzymes.
出处 《微生物学通报》 CAS CSCD 北大核心 2015年第6期1122-1132,共11页 Microbiology China
基金 江苏省自然基金项目(No.BK2012695) 江苏省科技型中小企业创新基金项目(No.BK2012695) 教育部留学回国人员启动基金项目(No.2012-44) 江苏省六大人才高峰计划(第十批) 江苏省博士集聚计划(2014) 江苏高校优势学科建设工程资助项目
关键词 细菌 木质素 降解 代谢途径 Bacteria, Lignin, Degradation, Metabolism pathway
  • 相关文献

参考文献5

二级参考文献92

  • 1李翠珍,文湘华.白腐真菌F2的生长及产木质素降解酶特性的研究[J].环境科学学报,2005,25(2):226-231. 被引量:24
  • 2Solomon EI, Sundaram UM, Machonkin TE. Multicopper oxidases and oxygenases. Chem Rev, 1996, 96(7): 2563-2606.
  • 3Baldrian P. Fungal laccases-occurrence and properties.FEMS Microbiol Rev, 2006, 30(2): 215-242.
  • 4Bao W, O'Malley D M, Whetten R, et al. A laccase associated with lignification in Loblolly Pine Xylem. Science, 1993: 260(5108): 672-674.
  • 5Enguita F J, Martins LO, Henriques AO, et al. Crystal structure of a bacterial endospore coat component - A laccase with enhanced thermostability properties. J Biol Chem, 2003, 278(21): 19416-19425.
  • 6Shleev SV, Morozova OV, Nikitina OV, et al. Comparison of physico-chemical characteristics of four laccases from different basidiomycetes. Biochimie, 2004, 86(9/10): 693-703.
  • 7Palmer AE, Lee SK, Solomon EI. Decay of the peroxide intermediate in laccase: reductive cleavage of the O-O bond. J American Chemical Society, 2001, 123(27): 6591-6599.
  • 8Garavaglia S, Cambria MT, Miglio M, et al. The structure of Rigidoporus lignosus Laccase containing a full complement of copper ions reveals an asymmetrical arrangement for the T3 copper pair. J Mol Biol, 2004, 342(5): 1519-1531.
  • 9Ceylan H, Kubilay S, Aktas prediction of optimum N, et al. An approach for reaction conditions for laccase-catalyzed bio-transformation of 1-naphthol by response surface methodology (RSM). Biores Technol, 2008, 99(6): 2025-2031.
  • 10Ossiadacz J, AI-Adhami A, Bajraszewska D, et al. On the use of Trametes versicolor laccase for the conversion of 4-methyl-3-hydroxyanthranilic acid to actinocin chromophore. J Biotechnol, 1999, 72: 141-149.

共引文献62

同被引文献399

引证文献34

二级引证文献237

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部