摘要
作为人类基因组最为典型的表观遗传现象,DNA甲基化在多种关键生理活动中扮演重要角色.系统分析基因组尺度的DNA甲基化概况意义重大.从Cp G岛等基本定义出发,阐述了高通量DNA甲基化的检测技术以及针对芯片技术与下一代测序技术的低水平数据处理方法;重点对比了基于机器学习理论对Cp G位点及Cp G岛甲基化水平的预测算法,以及所利用的特征对预测效果的影响与发展趋势;并对DNA差异甲基化在组织特异性、癌症等多种疾病中的计算分析进行了全面的综述.
As the most common type of epigenomic modifications in human genome, DNA methyaltion plays crucial roles in many key biological activities. It is meaningful to investigate the DNA methylation landscape. In this review, some fundamental and controversial definitions are introduced in the first part, and the genome-wide detection and analysis methods are investigated, especially the array-based and sequence-based methods; the computational prediction models of methylation levels of Cp G sites and Cp G islands are highlighted in detail, and the vital influence of applied features for prediction performances is analyzed. Finally, the computational analyses of differential methylation in tissues and various diseases including cancer are discussed.
出处
《中国科学:生命科学》
CSCD
北大核心
2015年第5期450-459,共10页
Scientia Sinica(Vitae)
基金
国家自然科学基金(批准号:61105003)
中央高校基础研究基金(批准号:A03007023801210)资助项目
关键词
DNA甲基化
检测技术
预测方法
差异甲基化
CPG岛
DNA methylation
detection technology
prediction
differential methylation
CpG island