期刊文献+

Microstructural evolution and mechanical properties of in situ TiB_2/Al composites under high-intensity ultrasound 被引量:3

Microstructural evolution and mechanical properties of in situ TiB_2/Al composites under high-intensity ultrasound
原文传递
导出
摘要 Microstructural evolution and mechanical properties of in situ TiB2/A1 composites fabricated with exothermic reaction process under high-intensity ultra- sound produced by the magnetostrictive transducer were investigated. In this method, the microstructure and grain refining performance of the TiB2/A1 composites were characterized by optical morphology (OM), scanning electron microscopy (SEM), energy-dispersive spec- trometer (EDS), and X-ray diffraction (XRD) analysis. Microstructural observations show a decreasing trend in the grain size of the composites due to the ultrasound and the content of TiB2 particles in the composites. Compared with the process without ultrasound, the morphology and ag- glomeration of TiB2 particles are improved by high-in- tensity ultrasound. Meanwhile, it is proposed that the formation of TiBz particles occurs via the transformation from TiA13, and at the optimal amount of the reactants, the conversion efficiency of TiA13 into TiB2 almost reaches up to 100 %. Finally, the effects of high-intensity ultrasound and TiB2 particles on the mechanical properties of the TiB2/A1 composites were also discussed. Microstructural evolution and mechanical properties of in situ TiB2/A1 composites fabricated with exothermic reaction process under high-intensity ultra- sound produced by the magnetostrictive transducer were investigated. In this method, the microstructure and grain refining performance of the TiB2/A1 composites were characterized by optical morphology (OM), scanning electron microscopy (SEM), energy-dispersive spec- trometer (EDS), and X-ray diffraction (XRD) analysis. Microstructural observations show a decreasing trend in the grain size of the composites due to the ultrasound and the content of TiB2 particles in the composites. Compared with the process without ultrasound, the morphology and ag- glomeration of TiB2 particles are improved by high-in- tensity ultrasound. Meanwhile, it is proposed that the formation of TiBz particles occurs via the transformation from TiA13, and at the optimal amount of the reactants, the conversion efficiency of TiA13 into TiB2 almost reaches up to 100 %. Finally, the effects of high-intensity ultrasound and TiB2 particles on the mechanical properties of the TiB2/A1 composites were also discussed.
出处 《Rare Metals》 SCIE EI CAS CSCD 2015年第3期168-172,共5页 稀有金属(英文版)
基金 financially supported by the National High Technology Research and Development Program of China(No.2013AA031104)
关键词 Microstructural evolution Mechanicalproperties In situ High-intensity ultrasound Magnetostrictive transducer Microstructural evolution Mechanicalproperties In situ High-intensity ultrasound Magnetostrictive transducer
  • 相关文献

参考文献1

二级参考文献4

共引文献4

同被引文献7

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部