摘要
Aluminum-doped zinc oxide (ZnO:AI) films were deposited by direct current magnetron sputtering in incorporating hydrogen in sputtering gas at room temper- ature. The influences of hydrogen content in sputtering gas on the structural, optical, and electrical properties of ZnO:A1 films were systematically investigated. It is found that hydrogen incorporated into ZnO lattice forms shallow donors in ZnO:A1 films and plays an important role in the properties of ZnO:A1 films. The electrical conductivity and infrared (IR) reflectance are improved due to the increase of electron carrier concentration, and the average trans- mittance decreases, which is ascribed to the strong scat- tering from the hydrogen incorporated and oxygen vacancies in ZnO:A1 films. In this study, the resistivity of 5.5 × 10-4 Ω.cm is obtained, the average transmittance of the wavelength in the range of 400-900 nm is almost 86 %, and the IR reflectance reaches 75 % at 2,500 nm, which is higher than that of reported TCO films. The band gap determined by optical absorption is a result of com- petition between Burstein-Moss effect and many-body perturbation effect. However, the hydrogen content in sputtering gas is above 10 %, and the optical band gap shift is independent of hydrogen content in sputtering gas.
Aluminum-doped zinc oxide (ZnO:AI) films were deposited by direct current magnetron sputtering in incorporating hydrogen in sputtering gas at room temper- ature. The influences of hydrogen content in sputtering gas on the structural, optical, and electrical properties of ZnO:A1 films were systematically investigated. It is found that hydrogen incorporated into ZnO lattice forms shallow donors in ZnO:A1 films and plays an important role in the properties of ZnO:A1 films. The electrical conductivity and infrared (IR) reflectance are improved due to the increase of electron carrier concentration, and the average trans- mittance decreases, which is ascribed to the strong scat- tering from the hydrogen incorporated and oxygen vacancies in ZnO:A1 films. In this study, the resistivity of 5.5 × 10-4 Ω.cm is obtained, the average transmittance of the wavelength in the range of 400-900 nm is almost 86 %, and the IR reflectance reaches 75 % at 2,500 nm, which is higher than that of reported TCO films. The band gap determined by optical absorption is a result of com- petition between Burstein-Moss effect and many-body perturbation effect. However, the hydrogen content in sputtering gas is above 10 %, and the optical band gap shift is independent of hydrogen content in sputtering gas.
基金
financially supported by the National Natural Science Foundation of China(Nos.21101151 and 51272250)