期刊文献+

光滑曲线去噪算法在分段线性拟合时间序列中的应用研究 被引量:1

Research of Denoising Algorithm Smooth Curve in the Application of Piecewise Linear Fitting Time Series
下载PDF
导出
摘要 时间序列在经济社会等多个领域发挥着重要的作用。然而,时间序列通常含有较多不规则波动,这些不规则波动易对时间序列数据挖掘造成影响。因此,对时间序列进行降噪处理则是一个亟待解决的问题。该文介绍了一种基于光滑曲线去噪算法在分段线性时间序列中的应用方法。通过对时间序列进行光滑去噪处理,从而得到去噪后的光滑曲线数据,再通过时间序列分段线性的方法找出该序列数据的关键点,进行时间序列的线性分段拟合。实验表明:与直接分段拟合相比,先通过光滑去噪后再进行分段线性拟合得到的结果更好。 Time series plays an important role in the economic, society, and other fields. However, time series usually contains many irregular fluctuations which are easy to cause an negative effect on time series data mining. Therefore, noise rcduction processing is a problem to be solved. This paper introduced a denoising algorithm based on smooth curve in the application of piecewise linear time series. Smooth curve data is created after removing the time series noise. Then by using the method of time series piecewise linear, data points arc found out to fit the original time series. The experiments show that: compared with direct subsection fitting methods, the experiments results are much better by doing smooth denoising firstly and then pieccwise linear fitting.
出处 《科技资讯》 2015年第1期216-217,共2页 Science & Technology Information
基金 2014年广西壮族自治区级大学生创新创业训练计划立项项目(201411548098)
关键词 时间序列 光滑去噪 线性拟合 分段表示 Time series:Smooth denoising: Piecewise linear fitting Segmentation presentation
  • 相关文献

参考文献6

  • 1Wiegand T,Sullivan G J,Bjontegaard G,et al.Overview of the H.264/AVC Video Coding Standard[J].IEEE Trans- actions on Circuits and Systems for Video Technology, 2003,13(7) : 560- 576.
  • 2Joint Video Team.H.264/AVC Ref- erence Software Version JM17.2[EB/ OL]. (2010-05-21 ). http : //iphome. hhi. de/suehring/tml/ download/.
  • 3Sanghyun Park, Sang-WookKim, Wesley W. Chu. Segment-Based APProach for Subsequence searches in sequence Databases[C].Proceedings of the 16th ACM symposium on Applied Computing. NewYork : A CM Press. 2001.
  • 4肖辉,胡运发.基于分段时间弯曲距离的时间序列挖掘[J].计算机研究与发展,2005,42(1):72-78. 被引量:59
  • 5王郝楠.时间序列的线性化表示研究[D1.辽宁:辽宁师范大学,2012.
  • 6赵建秀,王洪国,邵增珍,张岳,丁艳辉.一种基于信息熵的时间序列分段线性表示方法[J].计算机应用研究,2013,30(8):2391-2394. 被引量:13

二级参考文献26

  • 1詹艳艳,徐荣聪,陈晓云.基于斜率提取边缘点的时间序列分段线性表示方法[J].计算机科学,2006,33(11):139-142. 被引量:46
  • 2潘定,沈钧毅.时态数据挖掘的相似性发现技术[J].软件学报,2007,18(2):246-258. 被引量:41
  • 3G. Das, K. Lin, H. Mannila, et al.Rule discovery from time series. In: Proc. of the 4th Int'l Conf. of Knowledge Discovery and Data Mining. Menlo Park, CA: AAAI Press, 1998. 16--22.
  • 4A. Debregeas, G. Hebrail. Interactive interpretation of Kohonen maps applied to curves. In: Proc. of the 4th Int'l Conf. of Knowledge Discovery and Data Mining. Menlo Park, CA: AAAI Press, 1998. 179--183.
  • 5E. Keogh, M. Pazzani. An enhanced representation of time series which allows fast and accurate classification, clustering andrelevance feedback. In: Proc. of the 4th Int'l Conf. of Knowledge Discovery and Data Mining. Menlo Park, CA: AAAI Press, 1998. 239--241.
  • 6Z. M. Kovacs-Vajna. A fingerprint verification system based on triangular matching and dynamic time warping. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2000, 22 (11) : 1266-- 1276.
  • 7S. Park, S. Kim, W. Chu. Segment-based approach for subsequence searches in sequence databases. The 16th ACM Symp on Applied Computing, Las Vegas, NV, 2001.
  • 8S. Kim, S. Park, W. Chu. An index-based approach for similarity search supporting time warping in large sequence databases. The 17th Int'l Conf. on Data Engineering,Heidelberg, Germany, 2001.
  • 9L. Rabiner, B. H. Juang. Fundamentals of Speech Recognition.Englewood Cliffs, NJ: Prentice-Hall, 1993.
  • 10H. J. L. M. Vullings, M. H. G. Verhaegen, H. B.Verbruggen. ECG segmentation using time warping. In: Proc. of 2nd Int'l Symposium on Advances in Intelligent Data Analysis,1997. 275--285.

共引文献69

同被引文献8

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部