期刊文献+

Context模型奇异测度及其在量化中的应用 被引量:2

Amazing Measure of Context Model and its Application in Quantization
下载PDF
导出
摘要 使用聚类算法实现Context量化不仅可以推广量化器的应用范围,而且可以获得编码性能较理想的优化量化器.然而,聚类算法依赖于相似测度.前期研究中采用的描述长度增量不能完全满足相似测度的各项属性,从而导致聚类结果的性能偏差.因此,提出数学描述特性更好的奇异测度增量作为两个计数向量的相似测度,并说明其相应性质.实验结果证明,使用奇异测度增量作为相似测度,不仅能够保证Context量化器的稳定性,而且还获得更佳的编码结果. The context quantization based on the clustering algorithm can not only improve the application range but also get the optimizing quantizer with ideal coding efficiency.However,the clustering algorithm relies on the similarity measure.In the previous research,the increment of the description length is not suitable for the various attributes of similarity measure so as to cause the deviation of cluster result.So the increment of amazing measure with better mathematic descriptive feature as the similarity measure of two count vector quantity is proposed and its corresponding quality is stated.The results indicate that the application of increment of amazing measure as the similarity measure can not only guarantee the stability of Context quantizer,but also achieve better coding efficiency.
出处 《昆明学院学报》 2015年第3期105-109,125,共6页 Journal of Kunming University
基金 云南省自然科学基金青年基金资助项目(2013FD042) 国家自然科学基金资助项目(61062005)
关键词 Context建模 熵编码 描述长度 奇异测度 context modeling entropy coding description length amazing measure
  • 相关文献

参考文献9

  • 1RISSANENJ,LANGDONG.Universalmodelingandcoding[J].IEEETransInfTheory,1981,27(1):12-23.
  • 2RISSANEN J.A universaldatacompressionsystem[J].IEEETransInformTheory,1983,29:656-664.
  • 3WUX,ZHAIG.Adaptivesequentialpredictionofmultidimen-sionalsignalswithapplicat-ionstolosslessimagecoding[J].IEEETransImageProcessing,2011,20(1):36-42.
  • 4WUX.Losslesscompressionofcontinuous-toneimagesviacontextselectionandquantization[J].IEEETransonImageProc,1996,6(5):656-664.
  • 5CHENJian-hua,ZHANGYu-feng,SHIXin-ling.Imagecod-ingbasedonwavelettransformanduniformscalardeadzonequantizer[J].SignalProcessing:ImageCommunication,2006,21:562-572.
  • 6CHENJian-hua.Contextmodelingbasedoncontextquanti-zationwithapplicationinwaveletimagecoding[J].IEEETransImageProcessing,2004,13(1):26-32.
  • 7CHENMin,CHENJian-hua.ContextquantizationbasedonthemodifiedgeneticalgorithmwithK-means[C].Proceed-ingof9thInternationalConferenceonNaturalComputation,2013:424-428.
  • 8CHEN Min,CHEN Jian-hua.Affinitypropagationforthecontextquantization[J].Advanced MaterialsResearch,2013,791:1533-1536.
  • 9陈旻,王开云,薛洁,罗迪.一种图像自适应小波压缩算法[J].昆明学院学报,2013,35(6):96-99. 被引量:5

二级参考文献8

  • 1RISSANEN J. A universal data compression system [ J ]. IEEE Trans- actions on Information Theory, 1983,29 (5) :656 - 664.
  • 2CHEN Min,WANG Fu-yan. Context quantization based on the modi- fied K-means clustering [ J]. Advanced Materials Research, 2013, 756:4068 - 4072.
  • 3CHEN Min,CHEN Jian-hua. Affinity propagation for the Context quanti- zation [ J ]. Advanced Materials Research ,2013,791 : 1533 - 1536.
  • 4SHAPIRO J M. Embedded image coding using zerotrees of wavelets coefficients[ J]. IEEE Transactions on Signal Processing, 1993,41 (12) :3445 -3462.
  • 5CHEN J. Context modeling based on context quantization with appli- cation in wavelet image coding [ J ]. IEEE Transactions on Image Pro- cessing,2004,13 ( 1 ) :26 - 32.
  • 6CHEN J H, ZHANG Y F, SHI X L. Image coding based on Wavelet transform and uniform scalar dead zone quantizer[ J]. Signal Process- ing,2006,21 : 562 - 572.
  • 7FORCHHAMMER S, WU X,ANDERSEN J D. Optimal context quanti- zation in lossless compression of image data sequences [ J ]. IEEE Transactions on Image Processing,2004,13 (4) :509 - 517.
  • 8杨亚彪,陈旻,王付艳,蔡杰.基于贝叶斯估计的Context量化器设计方法[J].昆明学院学报,2013,35(3):79-82. 被引量:3

共引文献4

同被引文献19

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部