期刊文献+

Predicting the Reproduction Strategies of Several Microalgae Through Their Genome Sequences 被引量:1

Predicting the Reproduction Strategies of Several Microalgae Through Their Genome Sequences
下载PDF
导出
摘要 Documenting the sex and sexual reproduction of the microalgae is very difficult, as most of the results are based on the microscopic observation that can be heavily influenced by genetic, physiological and environmental conditions. Understanding the reproduction strategy of some microalgae is required to breed them in large scale culture industry. Instead of direct observation of sex and sexual reproduction under microscope, the whole set or the majority of core meiosis genes may evidence the sex and sexual reproduction in the unicellular algae, as the meiosis is necessary for maintaining the genomic stability and the advantages of genetic recombination. So far, the available genome sequences and bioinformatic tools (in this study, homolog searching and phylogenetic analysis) allow us to propose that at least 20 core meiosis genes (among them 〉6 must be meiosis specific) are enough for an alga to maintain its sexual reproduction. According to this assumption and the genome sequences, it is possible that sexual reproduction was carried out by Micromonas pusilla and Cyanidiosehyzon merolae, while asexual reproduction was adopted by Bigelowiella natans, Guillardia theta, Nannochloropsis gaditana, N. oeeanica, Chlorella variablis, Phaeodactylum tricornutum and Thalassiosira pseu- donana. This understanding will facilitate the breeding trials of some economic microalgae (e.g., N. gaditana, N. oceanica, C. vari- ablis and P. tricornutum). However, the reproduction strategies of these microalgae need to be proved by further biological experiments. Documenting the sex and sexual reproduction of the microalgae is very difficult, as most of the results are based on the microscopic observation that can be heavily influenced by genetic, physiological and environmental conditions. Understanding the reproduction strategy of some microalgae is required to breed them in large scale culture industry. Instead of direct observation of sex and sexual reproduction under microscope, the whole set or the majority of core meiosis genes may evidence the sex and sexual reproduction in the unicellular algae, as the meiosis is necessary for maintaining the genomic stability and the advantages of genetic recombination. So far, the available genome sequences and bioinformatic tools(in this study, homolog searching and phylogenetic analysis) allow us to propose that at least 20 core meiosis genes(among them ≥6 must be meiosis specific) are enough for an alga to maintain its sexual reproduction. According to this assumption and the genome sequences, it is possible that sexual reproduction was carried out by Micromonas pusilla and Cyanidioschyzon merolae, while asexual reproduction was adopted by Bigelowiella natans, Guillardia theta, Nannochloropsis gaditana, N. oceanica, Chlorella variablis, Phaeodactylum tricornutum and Thalassiosira pseudonana. This understanding will facilitate the breeding trials of some economic microalgae(e.g., N. gaditana, N. oceanica, C. variablis and P. tricornutum). However, the reproduction strategies of these microalgae need to be proved by further biological experiments.
出处 《Journal of Ocean University of China》 SCIE CAS 2015年第3期491-502,共12页 中国海洋大学学报(英文版)
基金 financially supported by National Science and Technology Supporting Program of China (2011BAD14B01) National Natural Science Foundation of China (31270408) Key Laborotary of Marine Bioactive Substance of State Oceanic Administration of China, The First Institute of Oceanography
关键词 MICROALGA sexual reproduction MEIOSIS core meiosis gene meiosis specific gene homolog searching phylogenetic analysis 基因组序列 繁殖策略 微藻 单细胞藻类 减数分裂 预测 有性繁殖 系统发育分析
  • 相关文献

参考文献53

  • 1Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, 3., Zhang, Z., Miller, W., and Lipman, D. J., 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25: 3389-3402.
  • 2Armbrust, E. V., 1999. Identification of a new gene family ex- pressed during the on-set of sexual reproduction in the centric diatom Thalassiosira weissflogii. Appllied and Environmental Microbiology, 65:3121-3128.
  • 3Blanc, G., Duncan, G., Agarkova, I., Borodovsky, M., Gurnon, J., Kuo, A., Lindquist, E., Lucas, S., Pangilinan, J., Polle, J., Salamov, A., Terry, A., Yamada, T., Dunigan, D. D., Grigoriev, I. V., Claverie, J. M., and van Etten, J. L., 2010. The Chlor-ella variabilis NC64A genome reveals adaptation to photo- symbiosis, coevolution with viruses, and cryptic sex. Plant Cell, 22 (9): 2943-2955.
  • 4Bowler, C., Allen, A. E., Badger, J. H., Grimwood, J., Jabbari, K., Kuo, A., Maheswari, U., Martens, C., Maumus, F., Otillar, R. E, Rayko, E., Salamov, A., Vandepoele, K., Beszteri, B., Gruber, A., I-Ieijde, M., Katinka, M., Mock, T., Valentin, K., Verret, E, Berges, J. A., Brownlee, C., Cadoret, J. P., Chiovitti, A., Choi, C. J., Coesel, S., de Martino, A., Detter, J. C., Durkin, C., Falciatore, A., Fournet, J., Haruta, M., Huysman, M. J., Jenkins, B. D., Jiroutova, K., Jorgensen, R. E., Joubert, Y., Kaplan, A., Kroger, N., Kroth, E G., la Roche, J., Lindquist, E., Lommer, M., Martin-Jezequel, V., Lopez, P. J., Lucas, S., Mangogna, M., McGinnis, K., Medlin, L. K., Montsant, A., Oudot-Le Secq, M. P., Napoli, C., Obornik, M., Parker, M. S., Petit, J. L., Porcel, B. M., Poulsen, N., Robison, M., Rychlewski, L., Rynearson, T. A., Schmutz, J., Shapiro, H., Siaut, M., Stanley, M., Sussman, M. R., Taylor, A. R., Vardi, A., von Dassow, P., Vyverman, W., Willis, A., Wyrwicz, L. S., Rokhsar, D. S., Weissenbach, J., Armbrust, E. V., Green, B. R., van de Peer, Y., and Grigoriev, I. V., 2008. The Phaeo- dactylum genome reveals the evolutionary history of diatom genomes. Nature, 456: 239-244.
  • 5Brown, M. R., Jeffrey, S. W., Volkman, J. K., and Dunstan, G. A., 1997. Nutritional properties of microalgae for mariculture Aquaculture, 151:315-331.
  • 6Cha, T. S., Chen, C. F., Yee, W., Aziz, A., and Lob, S. H., 2011. Cinnamic acid, coumarin and vanillin: Alternative phenolic compounds for efficient Agrobacterium-mediated transfor- mation of the unicellular green alga, Nannochloropsis sp. Journal of Microbiological Methods, 84: 430-434.
  • 7Chen, H. L., Li, S. S., Huang, R., and Tsai, H. J., 2008. Condi- tional production of a functional fish growth hormone in the transgenic line of Nannochloropsis oculata (Eustigmato- phyceae). Journal qfPhycology, 44: 768-776.
  • 8Chepumov, V. A., and Mann, D. G., 1997. Variation in the sex- ual behavior of natural clones of Achnanthes longipes (Bacil- lariophyta). European Journal of Phycology, 32:2147- 2154.
  • 9Chepurnov, V. A., Mann, D. G., Sabbe, K., and Vyverman, W., 2004. Experimental studies on sexual reproduction in diatoms. International Review of Cytology, 237: 91-154.
  • 10Chisti, Y., 2007. Biodiesel from microalgae. Biotechnology Advances, 25: 294-306.

同被引文献57

  • 1Schurko A M, Logsdon J M. Using a meiosis detection toolkit to investigate ancient asexual scandals and the evolution of sex[J]. Bioessays, 2008, 30(6): 579-589.
  • 2Ramesh M A, Malik S B, Logsdon J M. A phyloge- nomic inventory of meiotic genes: Evidence for sex in Giardia and an early eukaryotic origin of meiosis[J]. Current Biology, 2005, 15(2): 185-191.
  • 3Geiser D M, Pitt J I, Taylor J W. Cryptic speciation and recombination in the aflatoxin producing fungus As- pergillusflavus[J]. Proceedings of the National Acad- emy of Sciences, 1998, 95(1): 388-393.
  • 4Litvintseva A P, Thakur R, Vilgalys R, et al. Multilocus sequence typing reveals three genetic subpopulations of Cryptococcus neoformans var.grubii (serotype A), in- cluding a unique population in Botswana[J]. Genetics, 2006, 172(4): 2223-2238.
  • 5Welch D B M, Meselson M. Evidence for the evolution of bdelloid rotifers without sexual reproduction or ge- netic exchange[J]. Science, 2000, 288(5469): 1211-1215.
  • 6Birky C W. Heterozygosity, heteromorphy, and phy- logenetic trees in asexual eukaryotes[J]. Genetics, 1996, 144(1): 427-437.
  • 7Wright S, Finnegan D. Genome evolution: Sex and the transposable element[J]. Current Biology, 2001, 11(8): R296-R299.
  • 8Malik S B, PightlingA W, Stefaniak L M, et al. An ex- panded inventory of conserved meiotic genes provides evidence for sex in Trichomonas vaginalis[J]. PLoS ONE, 2008, 3(8): e2879.
  • 9Fu~ikov~i K, Pa~outov~ M, Rindi F. Meiotic genes and sexual reproduction in the green algal class Treboux-iophyceae (Chlorophyta)[J]. Journal of Phycology, 2015, 51(3): 419-430.
  • 10Falkowski P G, Knoll A H. Evolution of primary pro- ducers in the sea[M]. California: Elsevier Academic Press, 2007: 251-285.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部