摘要
针对利用高分辨率遥感影像检测阴影时受水体和偏蓝色地物影像的影响问题,提出了一种主成分变换和多波段运算相结合的阴影检测方法。首先,统计、分析了Quick Bird影像中阴影、水体及建筑物等典型地物的光谱特征;然后,基于主成分变换和多波段运算相结合的方法识别阴影区域和非阴影区域,并利用多峰直方图阈值算法对阴影进行自动检测;最后,利用形态学滤波算法对检测结果进行后处理。实验结果表明,该方法对Quick Bird影像中的阴影提取具有较高的精度、效率和普适性。
The detection accuracy is likely to be influenced by water bodies and bluish surface features during the detection of shadows on high-resolution remote sensing images. To tackle this problem, this paper proposes a new shadow detection method using principal component transform and multi -band operation. Firstly, the spectral values of typical surface features such as shadows, water bodies and buildings are counted and analyzed in QuickBird images. Secondly, the non-shaded area and shaded area are identified based on principal component transform combined multi-band operation and automatically detected by multimodal histogram threshold algorithm. Finally, the detected result is processed by morphological filtering algorithm. The result shows that this method shows higher extraction accuracy, efficiency and universality for QuickBird images.
出处
《国土资源遥感》
CSCD
北大核心
2015年第2期51-55,共5页
Remote Sensing for Land & Resources
基金
中国测绘科学研究院科研专项"多源多时相高分辨率影像高大地物阴影检测算法研究"(编号:513157)
甘肃省高等学校基本科研业务费项目"甘南地区滑坡泥石流信息遥感自动提取与危险性评价研究"(编号:212091)
中国博士后科学基金资助项目(编号:2014M552558XB)共同资助