期刊文献+

应用高精度旋转法的干涉仪检测误差校正 被引量:4

Error correction of interferometer detection with high-accuracy rotation method
下载PDF
导出
摘要 针对利用高精度菲索型干涉仪和旋转平均法对光学元件进行面形绝对检测时对旋转精度的要求,提出了一种旋转误差校正模型来修正面形绝对检测中的旋转非对称项误差。首先基于经典N步旋转平均法理论,通过泽尼克多项式给出面形误差的数学表达形式;然后根据旋转角度所引起的误差修正泽尼克系数进而修正旋转非对称项误差;最后用数值仿真及实验的方法验证了校正模型的正确性。在旋转角度误差为0.1°条件下的仿真结果显示:N步旋转平均法所得面形误差RMS值为真实面形的10.13%,校正后面形误差RMS值为真实面形的6.79%;实验结果显示:N步旋转平均法所得面形误差RMS值为真实面形的10.28%,校正后面形误差RMS值为真实面形的5.77%。这些结果证明所提出的校正模型准确可靠,提高了旋转平均法的检测精度。 According to the requirements of absolute flatness detection of optical elements for rotation accuracy by using high-accuracy rotation method based on a Fizeau interferometer,a rotary error correction model was proposed to correct the rotationally asymmetric deviation in the detection.Firstly,on the theoretical basis of the classical N-step rotation average method,a mathematical expression of surface deviation was given by Zernike polynomials.Then,the Zernike coefficient was corrected according to the error caused by the rotation angle and the rotationally asymmetric deviation was corrected.Finally,the correctness of the calibration model was verified by numerical simulationmethod and an actual experimental test.In the conditions in rotation error of 0.1°,the simulation shows that the absolute detection error(Root Mean Square,RMS)is 10.13% by using the N-step rotation average method,and it can be promoted to 6.79% after being corrected.Moreover,the experiment shows that the detection error(RMS)is 10.28% by using the same method,and it is promoted to 5.77% after being corrected.These results demonstrate that the proposed calibration model is accurate and reliable,which improves the detection accuracy
出处 《光学精密工程》 EI CAS CSCD 北大核心 2015年第5期1297-1303,共7页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.60902067) 吉林省重大科技攻关项目(No.112DGG001)
关键词 菲索干涉仪 旋转平均法 旋转非对称项面形误差 面形绝对检测 泽尼克多项式 Fizeau interferometer rotational averaging method rotationally asymmetric surfacedeviation absolute flatness detection Zernike polynomial
  • 相关文献

参考文献16

  • 1HARIHARAN P. Interferometric testing of optical surfaces: absolute measurements of flatness [J]. Optical Engineering, 1997, 36(9):2478-2481.
  • 2GRECO V, TRONCONI R, VECCHIO C D, et al. Absolute measurement of planarity with Fritz's method: uncertainty evaluation[J]. Applied Optics, 1999, 38(10):2018-2027.
  • 3RHEE H G. Self-calibration of high frequency errors of test optics by arbitrary N-step rotation [J]. International Journal of the Korean Society of Precision Engineering, 2000, 1(2):115-123.
  • 4EVANS C J, KESTNER R N. Test optics error removal [J]. Applied Optics, 1996, 35(7):1015-1021.
  • 5宋伟红,伍凡,侯溪,杨鹏.基于平移旋转的球面绝对检测技术仿真分析[J].强激光与粒子束,2011,23(12):3229-3234. 被引量:7
  • 6ICHIKAWA H, YAMAMOTO T. Apparatus and method for wavefront absolute calibration and method of synthesizing wavefronts [P]. U S: Patents 5982490, 1999.
  • 7OTAKI K, YAMAMOTO T, FUKUDA Y, et al. Accuracy evaluation of the point diffraction interferometer for extreme ultraviolet lithography aspheric mirror[J]. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 2002, 20(1):295-300.
  • 8SONG W, WU F, HOU X. Method to test rotationally asymmetric surface deviation with high accuracy [J]. Applied Optics, 2012, 51(22):5567-5572.
  • 9SONG W, WU F, HOU X, et al. Absolute calibration of a spherical reference surface for a Fizeau interferometer with the shift-rotation method of iterative algorithm [J]. Optical Engineering, 2013, 52(3):033601-6.
  • 10GUENTHER S, WOLFGANG O. Method for the interferometric measurement of non-rotationally symmetric wavefront errors [P]. U S: Patents 7277186, 2007.

二级参考文献82

  • 1李斌,阚珊珊,王淑荣.球面绝对检测及误差控制[J].光学精密工程,2004,12(z2):1-5. 被引量:1
  • 2张峰,张斌智.磁流体辅助抛光工件表面粗糙度研究[J].光学精密工程,2005,13(1):34-39. 被引量:24
  • 3SHOREY A B. Mechanism of material removal in magnetorheological finishing of glass [D]. Ph. D Dissertation of University of Rochester, 2000.
  • 4KORDONSKI W I, GOLINI D. Multiple application of magnetorheological effect in high precision finishing[J]. Journal of Intelligent Material Systems and Structures, 2002,13:401-402.
  • 5DEGROOTE J E. Surface interactions between nanodiamonds and glass in magnetorheological finishing (MRF) [D]. Ph. D Dissertation of University of Rochester, 2007.
  • 6KORDONSKI W I. Magnetorheological effect as a base of new devices and technologies[J]. Journal of Magnetism and Magnetic Mat, 1993,122 : 395- 398.
  • 7TICHY J A. Hydrodynamic lubrication theory for the bingham plastic flow model[J]. Journal of Rheology, 1991,34:477-495.
  • 8LEE H, YANG M Y. Dwell time algorithm for computer-controlled polishing of small axis-symmetrical aspherical lens mold[J]. Opt. Eng, 2001, 40(9) :1936-1943.
  • 9T. Matsuyama, Y. Ohmura, D. M. Williamson. The lithographic lens: its history and evolution [C]. SPIE, 2006, 6154:24-37.
  • 10D. Bernd, S. Gunther. Interferometric testing of optical surfaces at its current limit [J]. International Journal for Light and Electron Optics, 2001, 112(9) : 392-398.

共引文献66

同被引文献32

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部