期刊文献+

基于EMD和AFD的齿轮断齿诊断技术研究 被引量:1

Research on Broken Teeth Diagnosis Technology Based on EMD andAFD
下载PDF
导出
摘要 断齿作为齿轮失效的形式之一,对其进行故障诊断具有重要意义。传统的诊断方法如自适应滤波方法对于非平稳振动信号的分析效果不太明显。EMD(Empirical Mode Decomposition,简称EMD)方法是把复杂的振动信号分解为有限个本征模函数(Intrinsic Mode Function,简称IMF)之和,得到的IMF包含真实的物理信息,而且都是平稳的。这种基于信号的局部特征时间尺度分解的方法非常适用于非线性和非平稳过程的分析,该方法能够实现通过时域的分析,得到故障特征信号。本文提出基于EMD和自适应滤波分解(Adaptive Filtering Decompositon,简称AFD)的方法,利用边际谱分析齿轮故障特征。实验结果表明,该方法能够有效、准确地提取齿轮断齿的故障特征。 As one of the failure forms of gear, broken teeth on the fault diagnosis is of great significance. Traditional diagnostic methods such as adaptive filtering decompositon tbr non-stationary vibration signal's analysis effcction is not obvious. The Empirical Mode Decomposition is a method that decomposes the complex vibration signals into the sum of a finite number oflntrinsic Mode Function, the IMF contains the actual physical information, and is smooth. This method which based on the local characteristic time scale of signal decomposition is very suitable for nonlinear and non-stationary process analysis, and it can realize getting fault characteristic signal through the analysis of time domain. This paper proposes a method, based on the EMD and Adaptive Filtering (AFD), Decomposition uses marginal spectrum analysis gear fault characteristics. The experimental results show that the method can effectively and accurately extract the fault characteristics of gear tooth broken.
机构地区 东北石油大学
出处 《自动化技术与应用》 2015年第5期80-83,共4页 Techniques of Automation and Applications
关键词 断齿 故障诊断 EMD broken teeth fault diagnosis EMD
  • 相关文献

参考文献5

  • 1HUANG N E,SHEN Z,LONG S R.The empirical mode decomposition and the Hilbert spectrum for nonlin ear and non-stationary time series analysis [C].Proceed- ings of the Royal Society of London, 1998,903 995.
  • 2韩清凯.于晓光.基于振动分析的现代机械故障诊断原理及应用[M].科学出版社,2010.
  • 3邹志旺,顾海明,马新锋.基于Hilbert-Huang变换的齿轮箱故障诊断[J].煤矿机械,2011,32(8):263-265. 被引量:6
  • 4严作堂,陈宏.基于振动信号诊断齿轮断齿故障新方法[J].机械传动,2012,36(9):93-95. 被引量:5
  • 5HUANG N E.A new method for nonlinear and nonstationary time seriesanalysis: empirical mode decom- position and Hilbert spectral analysis[J].Proceedings of SPIE, 2000,4056097) : 899-955.

二级参考文献8

共引文献11

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部