期刊文献+

基于MRAS的无速度传感器矢量控制系统仿真

Simulink Research on Sensorless Vector Control System Based on MRAS
下载PDF
导出
摘要 研究了一种基于矢量控制的模型参考自适应异步电机无速度传感器方案。该方案利用转子磁链的电压方程和电流方程分别计算转子磁链,用电压模型的输出作为转子磁链的实际值,用电流模型的输出作为转子磁链的估算值,将电压模型与电流模型误差信号送至辨识计算法自适应机构中,通过自适应机构的调节来产生控制信号,进而调节电流模型中的参数,最终实现输出误差为零。对该方案进行了仿真比较,结果表明,提出的方案在高低速均能准确检测到转子的位置和速度,具有良好的动静态运行性能。 In this paper, an amended method of estimating the rotor speed about method reference adaptive system (MRAS) on the basis of vector control is put forward. The scheme calculates rotor flux respectively using voltage equation and current equation of rotor flux, using the output of voltage mode] as the actual value of the rotor flux, using the output of the current model as the estimated value of the rotor flux. The error signal of the voltage model and the current model is sent to the error identification method adaptive mechanism, control signal is generated through the regulation of the adaptive mechanism, and then the parameters in the current model are adjusted to achieve that the output error is zero. Comparative study of simulation is presented in this paper. The results show that novel method is capable of estimating the rotor position and speed precisely under the condition of high or low speed, it also possesses good static and dynamic performance.
出处 《农业装备与车辆工程》 2015年第6期5-8,共4页 Agricultural Equipment & Vehicle Engineering
基金 南京工程学院科研创新基金面上项目(CKJB201311)
关键词 模型参考自适应系统 矢量控制 MATLAB仿真 model reference adaptive system (MRAS) vector control MATLAB simulation
  • 相关文献

参考文献9

二级参考文献45

  • 1陆海峰,瞿文龙,张磊,陈伟.一种基于无功功率的异步电机矢量控制转子磁场准确定向方法[J].中国电机工程学报,2005,25(16):116-120. 被引量:36
  • 2路强,沈传文,季晓隆,孟永庆.一种用于感应电机控制的新型滑模速度观测器研究[J].中国电机工程学报,2006,26(18):164-168. 被引量:38
  • 3赵德宗,张承进,郝兰英.一种无速度传感器感应电机鲁棒滑模控制策略[J].中国电机工程学报,2006,26(22):122-127. 被引量:34
  • 4林平(Lin Ping).[D].杭州: 浙江大学 (Hangzhou: Zhejiang University),2003.
  • 5[2]Shin MyoungHo,Hyun DongSeok,Cho SoonBong,et al.An improved stator flux estimation for speed sensorless stator flux orientation control of induction motots power electronics[J].IEEE Trans on Industry Application,2000,15(2):312-318.
  • 6[4]Heber B,Xu Longya,Tang Yifan.Fuzzy logic enhanced speed control of an indirect field-oriented induction machine drive[J].IEEE Trans on Power Electronics,1997,12(5):772-778.
  • 7[5]Mehrotra P,Quaico J E,Venkatesan R.Speed estimation of induction motor using artificial neural networks[C]∥IEEE Intornational Conrference on Industrial Electrmics'96,1996:881-886.
  • 8[6]Sehroder D,Sehaffner C,Lenz U.Neural-net based observers for sensorless drives[C]//IEEE Intornational Conrference on Industrial Electrmics' 94,1994:1599-1610.
  • 9[9]Rashed M,Goh K B,Dunnigan M W,et al.Sensorless second-order sliding-mode speed control of a voltage-fed induction-motor drive using nonlinear state feedback[J].IEE Proc Electr Power AN,2005,152(5):1123-1136.
  • 10[10]Cristian Lascu,Gheorghe-Daniel Andreescu.Slidingmode observer and jmproved integrator with DC-offset compensation for flux estimation in sensorless-controlled induction motors[J].IEEE Trans on Ind Electron,2006,53(3):785-794.

共引文献149

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部