期刊文献+

量子突发纠错乘积码的构造 被引量:1

Constructions of Quantum Burst-Correcting Product Codes
下载PDF
导出
摘要 量子突发纠错码是以CSS量子码的纠错原理和构造技术为基础,在量子计算和量子通信中有着十分重要的作用。首次利用GF(q)上的任意线性码C1=n,k1[,d]1 q和满足对偶包含关系的BCH码C2=n,k2[,d]2 q,来构造乘积码C1C2和(C1C2)⊥,当满足n2>2k1k2时,在CSS构造的基础上便可构造参数为[[n2,n2-n]]的量子突发纠错乘积码,并给出其突发纠错能力。 Quantum burst-correcting codes based on the elegant structure of CSS codes play an important role in quantum computation and quantum communication. Let C1 = [ n, k1, d1 ] q denote an arbitrary linear code and C2 = [ n ,k2 ,d2 ] q be a BCH code over GF(q) C1 and C2 are used for the first time to construct theC1 (×)C2 and (C1 (×)C2)^⊥ product codes. If n2 〉2k1k2, then based on CSS construction, the quantum burst-correcting product codes with parameter [[ n2, n2-n ] ] can be constructed. Moreover, its ability in con-structing the quantum burst-correcting codes is also given.
出处 《通信技术》 2015年第6期648-652,共5页 Communications Technology
基金 安徽省自然科学基金(No.1408085MA05)~~
关键词 线性码 BCH码 乘积码 linear code BCH code product code
  • 相关文献

参考文献15

  • 1Shor P W. Scheme for Reducing Decoherence in Quantum Computer memory. [ J]. Physical Review A: 1995.52 (4) : 2493-2496.
  • 2Steane A M. Multiple Particle Interference and Quantum Error Correction. [J]. Proc. Roy. Soc. Lond. A: 1996 (29).2551.
  • 3Calderbank A R, Rains E M, Shor P W, et al. Quantum error correction via codes over GF (4). [ J ]. Quantum Physics : 1998 ( 5 ) :7-25.
  • 4Vatan Farrokh, Roychowdhury Vwani P, Anantram M P. Spatially Correlated Qubit Errors and Burst- CorrectingQuantum Codes. [ J ]. 1EEE Transaction on Information Theory : 1999 ( 5 ) : 1703 - 1708.
  • 5Tokiwa Kin-ichiroh, Kiyama Kazutaka, Yamasaki Takahi- ro. Some Binary Quantum Codes with Good Burst-Error- Correcting Capabilities. [ J ] Osaka Sangyo University: 2005(116) :11-17.
  • 6Kawabata Shiro. Quantum Interleaver: Quantum Error Correction for Burst Error. [ J ]. arXiv : quant - ph/ 0002020v4 : 2000(27) : 3540-3543.
  • 7GUO Ying, ZENG Gui-hua. How to Combat Quantum Bursts of a Errors Efficiently. [ J ]. Journal of the Physi- cal Society of Japan :2006( 3 ) : 1-8 .
  • 8冯宾.新的量子纠错码的构造[J].信息安全与通信保密,2014,12(5):117-119. 被引量:2
  • 9Grassl Markus,Rotteler Martin. Quantum Block and Conv- olutional Codes from Self-Orthogonal Product Codes [ J ]. Information Theory. 2007(19) 1018-1(P_2.
  • 10王新梅,肖国邦.纠错码-原理与方法.BCH码的描述及其距离限[M].修订版.西安:两安电子科技大学出版社,2011:242.

二级参考文献21

  • 1符方伟,沈世镒.循环码的周期分布的新的计算公式[J].通信学报,1996,17(2):1-6. 被引量:22
  • 2王维琼,张文鹏.关于设计距离为7的BCH码的非循环等价类[J].系统科学与数学,2006,26(1):42-47. 被引量:3
  • 3万哲先.代数和编[M].北京:科学出版社,1985.
  • 4BONDYJA MURTYUSR.图论及其应用[M].北京:科技出版社,1984..
  • 5冯克勤,陈豪.量子纠错码[M].北京:科学出版社,2010.
  • 6陈小松,王春鹏.设计距离为7的q元BCH码的周期分布[J].湖南大学学报(自然科学版),2007,34(11):84-87. 被引量:4
  • 7SHOR P W. Scheme for Reducing Decoherence in Quantum Computer Memory[J]. Phys. Rev. A, 1995, 52: 2493-2496.
  • 8STEANE A M. Error Correcting Codes in Quantum Theory[J]. Phys. Rev. Lett., 1996, 77: 793-797.
  • 9CALDERBANK A R, SHOR P W. Good Quantum Error- correcting Codes Exist[J]. Phys. Rev. A, 1997, 54: 900-911.
  • 10STEANE AM. Simple Quantum Error Correcting Codes[J]. Phys. Rev. A, 1996, 54: 4741-4751.

共引文献2

同被引文献4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部