期刊文献+

基于数据挖掘的移动用户预测 被引量:1

Mobile Customer Forecast based on Data Mining
下载PDF
导出
摘要 随着3G市场的深入以及4G商用的开始,移动通信行业面临着激烈的竞争,企业的发展型态已由过去以产品为中心的经营方式转变成为以客户为中心的消费型态。企业的发展必须以对客户的需求和消费行为的了解为重心,否则将会流失重大的商机。对于移动通信行业来说,如何通过数据挖掘技术去找优质客户群及可能流失的客户群具有十分重要的意义。利用数据挖掘技术,通过建立模型,预测电信企业的客户流失情况,为企业提高效益提供参考。 For the deep-going of 3G markets and the beginning of 4G commercialization, the mobile indus- try faces fierce market competition. The development pattern of the enterprises changes from product-cen- tric operation mode in the past times to the customer-centric operation mode at present. The enterprise must, for its development, focus on the requirements and consuming behaviors, or otherwise it would lose the major business opportunities. It is very important for the mobile industry to find the high-quality cus- tomer groups and the possibly lost customer groups via data mining technology. This paper describes the model based on data mining technology. Simulation results show that this method can effectively forecast the customer loss of telecom enterprise, and provide a reference for enterprises to improve their efficiency.
出处 《通信技术》 2015年第6期724-728,共5页 Communications Technology
关键词 数据挖掘 移动通信 客户预测 data mining telecommunication industry customer prediction
  • 相关文献

参考文献4

二级参考文献16

  • 1邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147
  • 2林盛,肖旭.基于RFM的电信客户市场细分方法[J].哈尔滨工业大学学报,2006,38(5):758-760. 被引量:42
  • 3连惟谦.应用资料分析技术进行顾客流失与顾客价值之研究[D].台湾:中原大学,2004.
  • 4郭崇慧.数据挖掘教程[M].北京:清华大学出版社,2005.
  • 5Agrawal R, Srikant R. Fast algorithms for mining association rules[C].In Proceeding of the 20th International Conference On Very Large Databases , Santiago ,Chile, 1994:487-499.
  • 6Maia M, Almeida J, Almeida V. Identifying User Behavior in Online Social Networks [ C ]//SocialNets ' 08. Glasgow, Scot- land,UK: [ s. n. ] ,2008.
  • 7Backstrom L, Kumar R, Marlow C, et al. Preferential Behavior in Online Groups[C]//Proc. of ACM Web Search and Data Mining. Stanford, CA, USA : [ s. n. ] ,2008.
  • 8Ahn Y Y, Han S, Kwak H, et al. Analysis of Topological Char- acteristics of Huge Online Social Networking Services [ C ]// Proc. of Intl. World Wide Web Conference (WWW). Banff, Alberta,Canada: [ s. n. ] ,2007.
  • 9Georgakis A, Li H. User Behavior Modeling and Content Based Speculative Web Page Prefetching [ J ]. Data & Knowledge En- gineering ,2006,59 ( 3 ) :770-788.
  • 10Wang Feng-Hsu,Shao Hsiu-Mei. Effective Personalized Rec-ommendation Based on Time- Framed Navigation Clustering and Association Mining [ J ]. Expert Systems with Applica- tions ,200d ,27 ( 3 ) :365-377.

共引文献18

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部