期刊文献+

基于USRP平台的宽带频谱感知系统设计与实现 被引量:7

Design and Implementation of Wideband Spectrum Sensing System based on USRP Platform
下载PDF
导出
摘要 频谱感知是认知无线电的一项关键技术,也是认知循环的基础。如何高效快速感知频谱环境分布一直是学术界研究的热点问题,尤其是对实际的空中信号进行实时测量是目前频谱感知研究亟待解决的难题。针对以上需求,利用USRP平台和MATLAB信号处理工具设计并实现了一种分布式宽带频谱快速感知系统,系统可支持多种频谱感知算法,通过千兆以太网可在中央处理模块融合感知节点的数据。并对实际的0.4~4.4 GHz无线频谱环境进行了初步测量,该系统能够及时发现频谱空穴和目标信号的存在,能够将感知结果上传给中央处理模块进行分析和存储,具有应用推广价值。 Spectrum sensing, as a key technology in cognitive radio, acts as the foundation of cognitive loop. How to achieve effective and rapid sensing of spectral distribution in surroundings always attracts much attention from the academic circle, and now becomes a hard problem demanding prompt solution in real-time measurement of the actual signals on the air. In order to deal with the problem mentioned above, a distributed wideband spectrum sensing system based on USRP platform and MATLAB signal processing tools is designed and implemented, which can support various algorithms of spectrum sensing and make a fusion of data from sending nodes in central processing module via Gigabit Ethernet. The preliminary meas- urement on the whole spectrum band from 0.4GHz to 4.4GHz indicates that this system could find spec- trum holes and the presence of target signal in a very short time, and in addition, could store the final de- cision from each node and make further analysis in central processing module, thus is of certain application and popularization value.
出处 《通信技术》 2015年第6期750-754,共5页 Communications Technology
关键词 认知无线电 宽带频谱感知 能量检测 多窄带检测 cognitive radio wideband spectrum sensing energy detection muhi-narrowband detection
  • 相关文献

参考文献8

  • 1Mitola J, Maquire G J. Cognitive Radio : Making Software Radios More Personal [ J ]. IEEE Personal Communica- tions, 1999, 6(4): 13-18.
  • 2陈雷,李永成,王英泓,王新增.认知无线电的频谱感知算法研究[J].通信技术,2013(9):38-41. 被引量:9
  • 3王韦刚,杨震.基于压缩感知的宽带频谱检测[J].南京邮电大学学报(自然科学版),2012,32(6):1-6. 被引量:3
  • 4Nafkha A, Naoues M, Cichon K, et al. Experimental Spectrum Sensing Measurements Using USRP Software Radio Platform and GNU-radio[ C]. Cognitive Radio O- riented Wireless Networks and Communications (CROWNCOM), 2014 9th International Conference on, 2014. pp. 429-434.
  • 5余兵才,姚明,邓晓华,丁军.基于GNU Radio和USRP新型软件频谱分析仪[J].现代雷达,2014,36(9):17-21. 被引量:8
  • 6MU Shu-juan, CHEN De-zhang, WANG Meng, et al. Spectrum Monitoring based on USRP2 Receiver[ C ]. An- tennas, Propagation & EM Theory (ISAPE), 2012 lOth International Symposium on ,2012. pp. 508-511.
  • 7Anas N M, Mohamad ti, Tahir M. Cognitive RadioTest Bed Experimentation Using USRP and Matlab (:Simu- hnk[ C ]. Computer Applications and Industrial Elec- tronics (ISCAIE), 2012 1EEE Symposium on,2012, pp. 229 -232.
  • 8Maleki S, Pandharipande A, Leus G. Two-Stage .Spec- trum Sensing for Cognitive Radios [ C ]. IEEE Interna- tional Conference on Acoustics Speech and Signal Pro- cessing( ICASSP), 2010:2946-2949.

二级参考文献20

  • 1曹瀚文,王文博.GNU Radio:开放的软件无线电平台[J].电信快报(网络与通信),2007(4):31-34. 被引量:24
  • 2申达.认知无线电频谱检测技术研究[D],上海:上海交通大学, 2009.
  • 3MITOLA J. Cognitive radio:Making software radios more personal [ J ]. IEEE Personal Communications, 1999,6 (4) : 13 - 18.
  • 4CANDES E, ROMBERG J, TAO T. Stable signal recovery from in- complete and inaccurate measurements [ J ]. Communications on Pure and Applied Mathematics ,2006,59 ( 8 ) : 1207 - 1223.
  • 5CANDES E, ROMBERG J. Quantitative robust uncertainty principles and optimally sparse decompositions [ J ]. Foundations of Comput Math ,2006,6 (2) :227 - 254.
  • 6DONOHO D L. Compressed sensing[ J]. IEEE Trans on Information Theory,2006,52(4) :1289 - 1306.
  • 7TROPP J A,LASKA J N,DUARTE M F,et al. Beyond nyquist :Effi- cient sampling of sparse bandlimited signals [ J ]. IEEE Trans on In-formation Theory,2010,56 ( 1 ) :520 -544.
  • 8CABRICD S. A tutorial on spectrum sensing fundamental limits and pratical challenges[ C ]//Proc of IEEE Symposium on New Fron- tiers in Dynamic Spectrum Access Network (DySPAN). 2005:12 -18.
  • 9TIAN Z, GIANNAKIS G B. A wavelet approach to wideband spec- trum sensing for cognitive radios[ C ] //Proc of the 1 st International Conference on Cognitive Radio Oriented Wireless Network and Communications. 2006 : 1 - 5.
  • 10TIAN Z, GIANNAKIS G B. Compressed sensing for wideband cogni- tive radios[ C]//ICASSP' 07. 2007:1357 - 1360.

共引文献17

同被引文献58

  • 1吕爱琴,田玉敏,朱明华.基于MATLAB的OFDM系统仿真及性能分析[J].计算机仿真,2005,22(10):164-168. 被引量:25
  • 2金宁,金小萍,史济刚.IEEE802.11a的OFDM系统帧检测研究[J].中国计量学院学报,2005,16(4):275-278. 被引量:6
  • 3FCC, EtDocket no. 02-135, Spectrum Policy Task Force (SPTF) Report. Federal Communications Commission. Tech. Rep.
  • 4Available : http ://www. ti. com/product/ADC12D1800. TIAN Z and Giannakis G B. Compressive Sensing for Wideband Cognitive Radios [ C ]. in Proc. 2007 IEEE ICASSP, pp, 1357-1360.
  • 5Haupt J, Castro R M and Nowak R. Distilled Sensing: Adaptive Sampling for Sparse Detection and Estimation [ J ]. Information Theory, IEEE Transactions on, vol. 57, no. 9, pp. 6222-6235, 2011.
  • 6Haupt J, Baraniuk R, Castro R, and Nowak R. Sequen- tially Designed Compressed Sensing [ C ]. Statistical Sig- nal Processing Workshop (SSP), 2012 IEEE, Aug. , pp. 401-404.
  • 7SUN Hong-jian, ZHAO Wei-yu, Nallanathan A. Adap- tive Compressive Spectrum Sensing for Wideband Cogni- tive Radios [ J ] Communications Letters, IEEE, vol. 16, no. 11, pp. 1812, 1815, November 2012.
  • 8WANG X, GUO W, LU Y, and WANG W. Adaptive Compressive Sampling for Wideband Signal [ C ]. in Proc. 2011 IEEE International Conference on Vehicular Technology-spring, pp. 1-5.
  • 9HUANG Tian-yao, LIU Yi- min, MENG Hua- dong, WANG Xi-qin. Adaptive Compressed Sensing via Mini- mizing Cramer-Rao Bound [ J ]. Signal Processing Let- ters, IEEE , vol. 21, no. 3, pp. 270,274, March 2014.
  • 10HUANG Ching- Chun, WANG Li- Chtm. Dynamic Sam- piing Rate Adjustment for Compressive Spectrum Sensingover Cognitive Radio Network [ J ]. Wireless Communica- tions Letters, IEEE , vol. 1, no. 2, pp. 57,60, April 2012.

引证文献7

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部