期刊文献+

ε-聚赖氨酸发酵过程的活性变化及发酵调控 被引量:2

Enhanced ε-poly-L-lysine production by improving cellular activity during fermentation
原文传递
导出
摘要 【目的】作为一种次级代谢产物,ε-聚赖氨酸生物合成受不同因素制约,为评价细胞活性对ε-聚赖氨酸生物合成的影响,研究发酵过程细胞活性、ε-聚赖氨酸合成及其它发酵参数变化,基于此改进发酵工艺。【方法】以Bac Light Live/Dead和5-氰基-2,3-二甲苯基氯化四唑(5-cyano-2,3-ditolyl tetrazolium chloride,CTC)为荧光探针,激光扫描共聚焦显微镜监测不同发酵时期细胞活性,并分析pH、细胞生长、ε-聚赖氨酸生物合成以及葡萄糖利用;通过向ε-聚赖氨酸合成期细胞添加酵母粉调控细胞活性改进发酵工艺。【结果】Bac Light Live/Dead为探针的共聚焦显示ε-聚赖氨酸发酵过程生长期(0-16 h)的细胞大都具有活性;CTC作为探针的分析显示生长期及ε-聚赖氨酸合成期前期(16-30 h)细胞活性高,ε-聚赖氨酸合成终止时细胞仅显示微弱活性;调控ε-聚赖氨酸合成期细胞活性的发酵工艺ε-聚赖氨酸终浓度达2.24 g/L(对照1.04 g/L)。【结论】调控ε-聚赖氨酸合成期细胞活性的发酵工艺可有效促进ε-聚赖氨酸生物合成。 [Objective] To assess the effect of cellular activity on ε-poly-l-lysine(ε-PL) biosynthesis and thereby to rationally improve the production,we studied the cellular activity,ε-PL formation and other parameters cross flask fermentation by Streptomyces ahygroscopicus.[Methods] Laser scanning confocal microscopy and a colorimetric method were used to determine cellular activity using Bac Light Live/Dead and 5-cyano-2,3-ditolyl tetrazolium chloride(CTC) as viable stains.To enhance the activity of the cells in the ε-PL production period,yeast extract was added.[Results]During ε-PL submerged fermentation in flasks,most cells were active in the growth period(0-16 h); cells had metabolic activity in the growth and earlier ε-PL production periods between 0 and 30 h fermentation.Almost no activity was detected after 48 h fermentation when no ε-PL was produced.The improved fermentation achieved 2.24 g/L ε-PL from1.04 g/L.[Conclusion] Biosynthesis of ε-PL can be boosted by up-regulating cell activity in its production phase.
出处 《微生物学报》 CAS CSCD 北大核心 2015年第6期725-731,共7页 Acta Microbiologica Sinica
基金 粤港招标项目--食用菌烘焙制品安全生产关键技术研究与产业化(2009A020700006) 食品微生物安全溯源系统智能化研究及应用(2011A011303001)~~
关键词 不吸水链霉菌 Ε-聚赖氨酸 液体发酵 细胞活性 生物合成 活性调控 Streptomyces ahygroscopicus ε-poly-L-lysine liquid fermentation cellular activity biosynthesis control fermentation
  • 相关文献

参考文献30

  • 1Shima S, Sakai H. Polylysine produced by Streptomyces. Agricultural and Biological Chemistry, 1977, 41: 1907- 1909.
  • 2Shima S, Matsuoka H, Iwamoto T, Sakai H. Antimicrobial action of e-poly-l-lysine. Journal of Antibiotics, 1984, 37 ( 11 ) : 1449-1455.
  • 3Shima S, Fukuhara Y, Sakai H. Inactivation of bacteriophages by e-poly-l-lysine produced by Streptomyces. Agricultural and Biological Chemistry, 1982, 46(7) : 1917-1919.
  • 4Hiraki J, Ichikawa T, Ninomiya S, Seki H, Uohama K, Seki H, Kimura S, Yanaqimoto Y, Barnett JW. Use of ADME studies to confirm the safety of e-polylysine as a preservative in food. Regulatory Toxicology and Pharmacology, 2003, 37 (2) : 328-340.
  • 5Hyldgaard M, Mygind T, Vad BS, Stenvang M, Otzen DE, Meyer RL. The antimicrobial mechanism of action of e-poly-l-lysine. Applied and Environmental Microbiology, 2014, 80 ( 24 ) :7758-7770.
  • 6Yoshida T, Nagasawa T. e-Poly-l-lysine: microbial production, biodegradation and application potential. Applied Microbiology and Biotechnology, 2003, 62 ( 1 ) : 21-26.
  • 7Shih IL, Shen MH, Van YT. Microbial synthesis of poly (e-lysine) and its various applications. Bioresource Technology, 2006, 97 (9) : 1148-1159.
  • 8Pandey AK, Kumar A. Improved microbial biosynthesis strategies and multifarious applications of the natural biopolymers epsilon-poly-l-lysine. Process Biochemistry, 2014, 49(3) : 496-505.
  • 9Kawai T, Takaaki K, Hiraki J, Izumi Y. Biosynthesis of e-poly-l-lysine in a cell-free system of Streptomyces albulus. Biochemical and Biophysical Research Communications, 2003, 311 (3): 635-640.
  • 10Yamanaka K, Kito N, lmokawa Y, Maruyama C, Utagawa T, Hamano Y. Mechanism of a-poly-l-lysine production and accumulation revealed by identification and analysis of an -poly-l-lysine-degrading enzyme. Applied and Environmental Microbiology, 2010, 76 (17) : 5669- 5675.

二级参考文献21

  • 1朱宏阳,徐虹,吴群,陈玮玮.ε-聚赖氨酸生产菌株的筛选和鉴定[J].微生物学通报,2005,32(5):127-130. 被引量:25
  • 2曹伟锋,谭之磊,袁国栋,贾士儒.ε-聚赖氨酸测定方法的改进[J].天津科技大学学报,2007,22(2):9-11. 被引量:14
  • 3Yoshida T, Nagasawa T. ε-Poly-L-lysine: microbial production, biodegradation and application potential[J]. Appl Microbiol Biotechnol, 2003, 62(1): 21-26.
  • 4Hiraki J. ε-Polylysine, its development and utilization[J].Fine Chem, 2000, 29(2): 18-25.
  • 5Hiraki J, lchikawa T, Ninomiya SI, et al. Use of ADME studies to confirm the safety of ε-Polylysine as a preservative in food[J]. Regul Tox Pharmacol, 2003, 37(2): 328-340.
  • 6Shih IL, Shen MH. Optimization of cell growth and poly (ε-lysine) production in batch and fed-batch cultures by Streptomyces albulus IFO 14147[J]. Process Biochemisty, 2006, 41(7): 1644-1649.
  • 7Xu CP, Kim SW, Hwang H J, et al. Application of statistically based experimental designs for the optimization of exo-polysaccharide production by Cordyceps militaris NG3 [J]. Biotechnol Appl Biochem, 2002, 36(2): 127-131.
  • 8Montgomery DC. Design and analysis of experiments[M]. New York: John Wiley & Sons, 1991: 45-50.
  • 9Viswanathan P, Surlikar NR. Production of a-amylase with Aspergillus flavus on Amaranthus grains by solid-state fermentation[J]. Basic Microbiol, 2001, 41(1): 57-64.
  • 10Chang SS, Lu WYW, Park SH, et al. Control of foodborne pathogens on ready-to-eat roast beef slurry by ε-polylysine[J]. Int J Food Microbiol, 2010, 141(3): 236-241.

共引文献26

同被引文献20

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部