期刊文献+

联合星载ICESat-GLAS波形与多光谱Landsat-TM影像的森林郁闭度估测 被引量:14

Estimating forest canopy cover by combining spaceborne ICESat-GLAS waveforms and multispectral Landsat-TM images
原文传递
导出
摘要 森林郁闭度的空间分布是评价森林生产力和分解率的一个重要指标.本研究以吉林汪清林区为研究区,分别利用星载激光雷达ICESat-GLAS波形数据和多光谱遥感Landsat-TM影像对该区的森林郁闭度进行估测,然后采用多元线性回归和BP神经网络两种方法对GLAS数据和TM数据进行联合,共同估测了森林郁闭度.结果表明:单一遥感数据估测森林郁闭度时,GLAS数据的模型决定系数为0.762,TM数据的模型决定系数为0.598.将GLAS数据和TM数据联合后估测森林郁闭度时,多元线性回归模型的复决定系数为0.841,BP神经网络模型的仿真精度为0.851.表明ICESat-GLAS数据与Landsat-TM影像联合能够发挥多源遥感数据的优势,提高森林郁闭度的估测精度,并为后续的空间区域内森林郁闭度的连续制图提供可靠的方法. The spatial distribution of forest canopy cover is a critical indicator for evaluating the for- est productivity and decomposition rates. With the Wangqing Forest Region in Jilin Province of Chi- na as the study area, this study first estimated the forest canopy cover using spaceborne LiDAR IC- ESat-GLAS waveforms and Landsat-TM multispectral images, respectively, and then GLAS data and TM images were combined to further estimate forest canopy cover by using multiple linear regression and BP neural network. The results showed that when the forest canopy cover was estimated with single data source, the determination coefficient of model was 0.762 for GLAS data and 0.598 for TM data. When the forest canopy cover was estimated by combining GLAS data and TM data, the determination coefficient of model was 0.841 for multiple linear regression, and the simulation pre- cision was 0.851 for BP neural network. The study indicated that the combination of ICESat-GLAS data and Landsat-TM images could exploit the advantages of multi-source remote sensing data and improve the estimating accuracy of forest canopy cover, and it was expected to provide a promising way for spatially continuous mapping of forest canopy cover in future.
出处 《应用生态学报》 CAS CSCD 北大核心 2015年第6期1657-1664,共8页 Chinese Journal of Applied Ecology
基金 中央高校基本科研业务费专项(DL12EB07) 国家自然科学基金面上项目(41171274)资助
关键词 森林郁闭度 ICESat-GLAS Landsat-TM 多源遥感数据 神经网络模型 forest canopy cover ICESat-GLAS Landsat-TM multi-source remote sensing data BP-neural network model.
  • 相关文献

参考文献30

  • 1Meng X-Y ( 孟宪宇 ). Forest Measurement. Beijing: China Forestry Publishing House, 1996
  • 2Muinonen E, Parikka H, Pokharel YP, et al. Utilizing a multi-source forest inventory technique, MODIS data and landsat TM images in the production of forest cover and volume maps for the Terai Physiographic Zone in Nepal. Remote Sensing, 2012, 4- 3920-3947.
  • 3Carreiras J, Pereira J, Pereira JS. Estimation of tree canopy cover in evergreen oak woodlands using remote sensing. Forest Ecology and Management, 2006, 223 : 45-53.
  • 4徐定,彭道黎.基于像元二分模型的森林郁闭度估测方法[J].东北林业大学学报,2013,41(2):119-122. 被引量:13
  • 5Joshi C, Leeuw JD, Skidmore AK, et al. Remotely sensed estimation of forest canopy density: A comparison of the performance of four methods. International Journal of Applied Earth Observation and Geoinformation, 2006, 8 : 84-95.
  • 6Vollmar M, Rasi R, Beuchle R, et al. Combining Land- sat TM/ETM~ and ALOS AVNIR-2 Satellite Data for tropical forest cover change detection. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6:102-109.
  • 7杜晓明,蔡体久,琚存勇.采用偏最小二乘回归方法估测森林郁闭度[J].应用生态学报,2008,19(2):273-277. 被引量:43
  • 8吴飏,张登荣,张汉奎,武红敢.结合图像纹理特征的森林郁闭度遥感估测[J].林业科学,2012,48(2):48-53. 被引量:26
  • 9Iqbal IA, Dash J, Ullah S, et al. A novel approach to estimate canopy height using ICESat/GLAS data: A case study in the New Forest National Park, UK. Internation- al Journal of Applied Earth Observation and Geoinforma- tion, 2013, 23:109-118.
  • 10Xing YQ, Alfred DG, Zhang JJ, et al. An improved method for estimating forest canopy height using ICESat- GLAS full waveform data over sloping terrain: A case study in Changbai Mountains, China. International Jour- nal of Applied Earth Observation and Geoinformation, 2010 12. 385-392.

二级参考文献114

共引文献179

同被引文献201

引证文献14

二级引证文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部