期刊文献+

V_2O_5·nH_2O纳米带的简单合成及其电容性能研究

Facile Synthesis and Capacitive Properties of V_2O_5·nH_2O nanobelts
下载PDF
导出
摘要 以V2O5为原料,采用直接水合的简单方法合成了V2O5·n H2O纳米带.利用XRD和IR测试样品的结构和组成,利用SEM测试其形貌.通过循环伏安和恒流充放电法测试了V2O5·n H2O在1mol·L-1KNO3、Na NO3和Li NO3电解液中的电容性能.电化学测试结果表明,V2O5·n H2O在KNO3电解液中电容性能最好.当电压窗口为(-0.4-0.8)V、电流密度为200m A·g-1时,V2O5·n H2O电极在第600次充放电循环时展现出最大的比电容148.1F·g-1;再循环1400次后的比电容为142.6F·g-1,比电容保持率为96.3%.当电流密度从200 m A·g-1增大到800m A·g-1时,其比电容值为115.6 F·g-1,1000次循环后比电容保持率为97.9%,表明材料在大电流密度下的充放电性能较好.因此,直接水合制备的V2O5·n H2O纳米带适合做超级电容器的电极材料. V2O5·nH2O nanobehs were synthesized by easy hydration method without any additives or templates with commercial V2O5 powders as raw material. The structure and morphology of as-prepared sample were analyzed by XRD, IR and SEM. The capacitive properties of V2O5·nH2O nanobelts were determined by cyclic voltammetry and galvanostatic charge-discharge test in 1mol·L^-1 KNO3, NaNO3 and LiNO3 neutral electrolyte solutions. The results revealed that V2O5·nH2O nanobelts showed the best capacitive properties in KNO3 solution. In the poten- tial range of ( -0.4 -0.8)V, V2O5·nH2O electrode delivered the highest specific capacitance of 148.1 F·g^-1 at 600th cycle in KNO3 solution at a current density of 200 mA·g^-1. After 1400 cycles, the capacitance retention was 99.3%. Furthermore, the V205 . nH20 electrode still exhibited specific capacitance of 115.6 F . g^-1 and excellent cycle stability at high current density of 800 mA·g^-1 These results indicate that V2O5·nH2O nanobehs are desirable for electrode material of supercapacitor in KNO3 electrolyte solution.
出处 《西华师范大学学报(自然科学版)》 2015年第2期171-178,共8页 Journal of China West Normal University(Natural Sciences)
基金 西华师大科研项目(No.416198)
关键词 超级电容器 V2O5·nH2O纳米带 直接水合法 KNO3电解液 电容性能 supercapacitor V2O5·nH2O nanobehs hydration method KNO3 electrolyte solution capacitive properties.
  • 相关文献

参考文献24

  • 1CONWAY B. E. Electrochemical Supereapacitors [ M ]. New York: Kluwer Academic/Plenum Publishers, 1999.
  • 2BURKE A. Uhracapacitors: Why, How, and Where is the Technology [J]. Journal of Power Sources, 2000, 91 : 37 -50.
  • 3FRACKOWIAK E, BEGUIN F. Carbon Materials for the Electrochemical Storage of Energy in Capacitors [ J]. Carbon, 2001, 39:937 -950.
  • 4SUBRAMANIAN V, LUO C, STEPHAN A M, et al. Supercapacitors from Activated Carbon Derived from Banana Fibers [ J].J. Phys. Chem. C, 2007, 111: 7527-7531.
  • 5谢应波,乔文明,张维燕,孙刚伟,凌立成.活性炭表面改性对双电层电容器电化学性能的影响(英文)[J].新型炭材料,2010,25(4):248-254. 被引量:7
  • 6Elzbieta Frackowiak,Qamar Abbas,Franois Bguin.Carbon/carbon supercapacitors[J].Journal of Energy Chemistry,2013,22(2):226-240. 被引量:12
  • 7ZHENG J P, CYGAN P J, JOW T R. Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors [ J]. J. Electrochem. Soc., 1995, 142:2699-2703.
  • 8CHEN I L, WEI Y C, CHEN T Y, et al. Oxidative Precipitation of Ruthenium Oxide for Supercapacitors: Enhanced Capacitive Performances by Adding Cetyhrimethylammonium Bromide [ J]. Journal of Power Sources, 2014, 268:430-438.
  • 9LI X, WU Y J, ZHENG F, et al. Preparation and Characterization of RuO2/Polypyrrole Electrodes for Supercapacitors [ J ]. Solid State Communications 2014, 197:57 -60.
  • 10HEE Y L, GOODENOUGH J B. Supereapaeitor Behavior with KC1 Electrolyte [ J]. Journal of Solid State Chemistry, 1999, 144 : 220 - 223.

二级参考文献53

  • 1Conway B E.Electrochemical Supercapacitors:Scientific Fundamentals and Technological Applications[M].New York:Kluwer Academic Publisher/Prenum Press,1999.
  • 2Okajima K,Ohta K,Sudoh M.Capacitance behavior of activated carbon fibers with oxygen-plasma treatment[J].Electrochimica Acta,2005:50(11):2227-2231.
  • 3Raymundo-Piňero E,Kierzek K,Machnikowski J,et al.Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes[J].Carbon,2006,44(12):2498-2507.
  • 4Kierzek K,Frackowiak E,Lota G,et al.Electrochemical capacitors based on highly porous carbons prepared by KOH activation[J].Electrochimica Acta,2004,49(4):515-523.
  • 5Lozano-Castelló D,Cazorla-Amorós D,Linares-Solano A,et al.Influence of pore structure and surface chemistry on electric double layer capacitance in non aqueous electrolyte[J].Carbon,2003,41(9):1765-1775.
  • 6Bleda-Martínez M J,Maciá-Agulló J A,Lozano-Castelló D,et al.Role of surface chemistry on electric double layer capacitance of carbon materials[J].Carbon,2005,43(13):2677-2684.
  • 7Bleda-Martínez M J,Lozano-Castelló D,Morallón E,et al.Chemical and electrochemical characterization of porous carbon materials[J].Carbon,2006,44(13):2642-2651.
  • 8Kinoshita K.Carbon:Electrochemical and Physicochemical Properties[M].New York:John Wiley﹠Sons,1988:293-387.
  • 9Leon y Leon C A,Radovic L R.Interfacial chemistry and electrochemistry of carbon surfaces[M]//Thrower P A.Chemistry and Physics of Carbon.New York:Dekker,1994,24:213-310.
  • 10Biniak S,Swiatkowski A,Pakula M.Electrochemical studies of phenomena at active carbon-electrolyte solution interfaces[M]//Radovic L R.Chemistry and Physics of Carbon,New York:Dekker; 2001,27:125-225.

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部