期刊文献+

利用RNA-seq技术分析淹水胁迫下转BnERF拟南芥差异表达基因 被引量:3

RNA-sequencing Analysis of Differentially Expressed Genes in Wild-type and BnERF-transgenic Arabidopsis Under Submergence Treatment
原文传递
导出
摘要 为探究淹水胁迫下BnERF调节的耐淹防御相关途径,应用RNA-seq技术,对淹水6小时后的拟南芥(Arabidopsis thaliana)野生型(WT)和转BnERF株系(E33)幼苗进行基因表达分析。结果表明,淹水3天后,E33表现出较强的耐淹性,地上部生长状况和根系发育均明显强于野生型。E33幼苗未淹水处理时相对于野生型单独上调的基因有9个,4个为膜结合蛋白,其中2个参与MAPK级联途径,其它5个参与氧化胁迫及水分调节途径;与未淹水野生型相比,无论是未淹水处理还是淹水6小时后的E33幼苗中缺氧响应、抗氧化防护及细胞、器官发育相关基因的表达量均上调。另外,淹水6小时后E33的差异基因并未完全覆盖淹水6小时后野生型的差异基因;E33幼苗中缺氧响应、氧化胁迫响应、能量的产生与转变、乙醇代谢途径中的基因以及乙烯响应因子基因的表达量都明显高于野生型。上述结果表明,BnERF直接或间接调节植物的淹水胁迫相关生理代谢途径,参与淹水胁迫的防御过程。 RNA-sequencing (RNA-seq) was used to analyze differential gene expression in the wild-type (WT) and BnERF-transgenic Arabidopsis (E33) after 6 h submergence treatment to find pathways involved in defense against submergence treatment regulated by BnERF. E33 showed more tolerance with stronger shoot and root growth than the WT under 3 d submergence. Nine genes were specifically upregulated in E33 without submergence treatment as com- pared with the WT. Four genes encoded membrane-bound proteins and two of these participated in the mitogen-activated protein kinase cascade; the other five were involved in oxidative stress and water regulatory pathways. Genes responsive to hypoxia, antioxidant defense and plant development were upregulated in E33 under the control condition or 6 h sub- mergence as compared with the WT without submergence treatment. As compared with the WT, differently expressed genes in E33 did not significantly overlap with the WT when both were treated for 6 h submergence. Furthermore, genes responsive to hypoxia, oxidative stress, production and transformation of energy, and ethanol metabolic pathways as well as ethylene response factor genes showed higher expression level in E33 than that in the WT, so these pathways are regulated by BnERF directly or indirectly to participate in defense against submergence stress.
出处 《植物学报》 CAS CSCD 北大核心 2015年第3期321-330,共10页 Chinese Bulletin of Botany
基金 油菜产业技术体系(CARS-13) 科技部支撑计划(No.2010BAD01B10)
关键词 RNA-SEQ 乙烯响应因子 缺氧胁迫 氧化胁迫 耐淹 RNA-seq, ethylene response factor, hypoxia stress, oxidative stress, submergence-resistant
  • 相关文献

参考文献30

  • 1肖文娟,宾金华,武波.植物体中的MAPK[J].植物学通报,2004,21(2):205-215. 被引量:16
  • 2张计育,王庆菊,郭忠仁.植物AP2/ERF类转录因子研究进展[J].遗传,2012,34(7):835-847. 被引量:95
  • 3Alam I, Lee DG, Kim KH, Park CH, Sharmin SA, Lee H, Oh KW, Yun BW, Lee BH (2010). Proteorne analysis of soybean roots under watedogging stress at an early vegetative stage. J Biosci 35, 49-62.
  • 4Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Selina S, Dwight SS, Eppig JT, Harris MA, Hill DP, IsseI-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000). Gene ontology: tool for the unification of biology. Nat Genet 25, 25-29.
  • 5Cao YF, Song FM, Goodman RM, Zheng Z (2006). Mo- lecular characterization of four rice genes encoding ethy- lene-responsive transcriptional factors and their expres- sions in response to biotic and abiotic stress. J Plant Physio1163, 1167-1178.
  • 6Christianson JA, Liewellyn D J, Dennis ES, Wilson IW (2010), Global gene expression responses to watedog- ging in roots and leaves of cotton (Gossypium hirsutum L.). Plant Cell Physio151, 21-37.
  • 7Clough SJ, Bent AF (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidop- sis tha/iana. P/ant J 16, 735-743.
  • 8Dennis ES, Dolferus R, Ellis M, Rahman M, Wu Y, Hoeren FU, Grover A, ismond KP, Good AG, Peacock WJ (2000). Molecular strategies for improving waterlogging tolerance in plants. J Exp Bot 51, 89-97.
  • 9Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M (2000). Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12, 393-404.
  • 10Fukao T, Bailey-Serres J (2008). Submergence tolerance conferred by SublA is mediated by SLR1 and SLRL1 re- striction of gibberellin responses in rice. Proc NaU Acad Sci USA 105. 16814-16819.

二级参考文献47

  • 1YuXinHU YongHongWANG XinFangLIU JiaYangLI.Arabidopsis RAV1 is down-regulated by brassinosteroid and may act as a negative regulator during plant development[J].Cell Research,2004,14(1):8-15. 被引量:55
  • 2Asai T, Tena G, Plotnikova J, Willmann M R, Chiu W L, Gomez-Gomez L, Boller T, Ausubel F M, Sheen J, 2002.MAP kinase signaling cascade in Arabidopsis innate immunity. Nature, 415:977-983.
  • 3Baudouin E, Charpenteau M, Ranjeva R, Ranty B, 2002. A 45-kDa protein kinase related to mitogen-activated protein kinase is activated in tobacco cells treated with a phorbol ester. Planta, 214:400-405.
  • 4Boulton T G, Yancopoulos G D, Gregory J S, Slaughter C, Moomaw C, Hsu J, Cobb M H, 1990. An insulin-stimulatedprotein kinase similar to yeast kinases involved in cell cycle control. Science, 249:64-67.
  • 5Bogre L, Ligterink W, Heberle-Bors E, Hirt H, 1996. Mechanosensors in plants. Nature, 383:489-490.
  • 6Bogre L, Ligterink W, Meskiene I, Barker P J, Heberle-Bors E, Huskisson N S, 1997. Wounding induces the rapid and transient activation of a specific MAP kinase pathway. Plant Cell, 9:75-83.
  • 7Burnett E C, Desikan R, Moser R C, Neill S J, 2000. ABA activation of an MAP kinase in Pisum sativum epidermal peels correlates with stomatal responses to ABA. J Exp Bot, 51:197-205.
  • 8Cardinale F, Jonak C, Ligterink W, Niehaus K, Boller T, Hirt H, 2000. Differential activation of four specific MAPK pathway by distinct elicltors. J Biol Chem, 275:36734-36740.
  • 9Coronado M J, Gonzalez-Melendi P, Segui J M, Ramirez C, Rarany I, Testillano P S, Risueno M C, 2002. MAPK entry into the nucleus at specific interchromatin domains in plant differentiation and proliferation processes. J Struct Biol, 140:200~213.
  • 10DeLong A, Mockaitis K, Christensen S, 2002. Protein phosphorylation in the delivery of and response to auxin signals. Plant Mol Biol, 49:285-303.

共引文献109

同被引文献69

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部