期刊文献+

CONVERGENCE OF FINITE VOLUME SCHEMES FOR HAMILTON-JACOBI EQUATIONS WITH DIRICHLET BOUNDARY CONDITIONS

CONVERGENCE OF FINITE VOLUME SCHEMES FOR HAMILTON-JACOBI EQUATIONS WITH DIRICHLET BOUNDARY CONDITIONS
原文传递
导出
摘要 We study numerical methods for time-dependent Hamilton-Jacobi equations with weak Dirichlet boundary conditions. We first propose a new class of abstract monotone approximation schemes and get a convergence rate of 1/2 . Then, according to the abstract convergence results, by newly constructing monotone finite volume approximations on interior and boundary points, we obtain convergent finite volume schemes for time-dependent Hamilton-Jacobi equations with weak Dirichlet boundary conditions. Finally give some numerical results. We study numerical methods for time-dependent Hamilton-Jacobi equations with weak Dirichlet boundary conditions. We first propose a new class of abstract monotone approximation schemes and get a convergence rate of 1/2 . Then, according to the abstract convergence results, by newly constructing monotone finite volume approximations on interior and boundary points, we obtain convergent finite volume schemes for time-dependent Hamilton-Jacobi equations with weak Dirichlet boundary conditions. Finally give some numerical results.
出处 《Journal of Computational Mathematics》 SCIE CSCD 2015年第3期227-247,共21页 计算数学(英文)
基金 Acknowledgments. This work was supported by the National Natural Science Foundation of China (No. 11371170).
关键词 Hamilton-Jacobi equations Dirichlet boundary conditions Finite volume Monotone schemes. Hamilton-Jacobi equations, Dirichlet boundary conditions, Finite volume, Monotone schemes.
  • 相关文献

参考文献25

  • 1R. Abgrall, Numerical discretization of first-order Hamilton-Jacobi equations on triangular meshes, Comm. Pure Appl. Math., 49 (1996), 1339-1373.
  • 2R. Abgrall, Numerical discretization of boundary conditions for first order Hamilton-Jacobi equa?tions, SIAM J. Numer. Anal., 41 (2003), 2233-2261.
  • 3R. Abgrall, Construction of simple, stable and convergent high order schemes for steady first order Hamilton-Jacobi equations, SIAM J. Sci. Comput., 31 (2009), 2419-2446.
  • 4M. Bardi and 1. Cappuzzo-Dolcetta, Optimal Control and Viscosity solutions of Hamilton-Jacobi?Bellman Equations, Boston, 1997.
  • 5G. Barles, Uniqueness and regularity results for first order Hamilton-Jacobi equations, Indiana Univ. Math. J., 39 (1990), 443-466.
  • 6G. Barles and P.E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations, Asympt. Anal., 4 (1991), 271-283.
  • 7T.J. Barth and J.A. Sethian, Numerical schemes for the Hamilton-Jacobi and level set equations on triangulated domains, J. Comput. Phys., 145 (1998), 1-40.
  • 8F. Bornemann and C. Rasch, Finite-element discretization of static Hamilton-Jacobi equations based on a local variational principle, Comput. Visual. Sci., 9 (2006), 57-69.
  • 9J. Capuzzo-Dolcatta and F. Leoni, On the Vanishing Viscosity Approximation of a Time dependent Hamilton-Jacobi Equations, in Recent Trends in Nonlinear Analysis, Birkhauser, Basel, 2000, 59- 75.
  • 10Y. Cheng and C.W. Shu, A discontinuous Galerkin finite element method for directly solving the Hamilton-Jacobi equations, J. Comput. Phys., 223 (2007), 398-415.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部