期刊文献+

MiR-155在断奶期接力miR-146a介导肠上皮固有免疫耐受

MiR-155 contributes to intestinal innate tolerance via replacing miR-146a in suckling-weaning transition
下载PDF
导出
摘要 目的哺乳动物新生期肠上皮高表达mi R-146a介导固有免疫耐受,本研究探讨mi R-146a下降后肠上皮继续保持耐受状态的分子机制。方法定量PCR分析肠上皮mi R-146a与mi R-155表达模式,体外实验比较二者激活的刺激强度差异;转染及免疫印迹实验分析mi R-155在肠上皮免疫耐受中的功能及其可能调控靶标;小鼠提前断奶实验分析影响mi R-155激活的关键因素。结果肠上皮mi R-146a在新生期高表达并在断奶期降至极低水平,mi R-155则在断奶期剧烈上调;肠上皮中mi R-155激活强度显著高于mi R-146a;肠上皮高表达的mi R-155通过靶向抑制TAB2、IKKε、NIK等抑制炎症应答而非促进炎症;肠上皮mi R-155激活表达与哺乳动物断奶时间相关。结论哺乳动物肠道发育中,mi R-146a与mi R-155在断奶期发生功能接力,依次在新生期和成年期介导肠上皮固有免疫耐受。 It has demonstrated that mi R-146 a mediates innate immune tolerance in neonate intestine,however, the mechanism that keeping intestinal epithelial innate immune tolerance after mi R-146 a declined is unknown. We used real time PCR to examine the expression pattern of mi R-146 a and mi R-155 in intestinal epithelial cells(IEC) at different days after birth. In vitro assay were used to examine their induction pattern and functions in limiting inflammatory response, while early-wearing assay was used to confirm their function in vivo.Our results showed that mi R-155 expression was low in neonatal period and dramatic increased at suckling-weaning transition. In vitro assay showed that the activated expression of mi R-155 in IEC was much higher than that of mi R-146 a and can exert negative regulation on pro-inflammatory signaling pathways through targeting TAB2, IKKε and NIK. In vivo assay indicted that the induction of mi R-155 in IEC was affected by wearing time and acted role mainly after weaning. Thus, our results identify that differential activated mi R-146 a and mi R-155 contribute to developmental intestinal innate tolerance in a transferred manner in suckling-weaning transition.
出处 《免疫学杂志》 CAS CSCD 北大核心 2015年第6期471-475,共5页 Immunological Journal
基金 重庆市科技攻关计划项目(CSTC2009AB5197) 国家自然科学基金(81271813 81202326)
关键词 肠上皮细胞 MIR-155 免疫耐受 断奶过渡 Intestinal epithelial cells miR-155 Immune tolerance Suckling-weaning transition
  • 相关文献

参考文献19

  • 1Muncan V, Heijmans J, Krasinski SD, et al. Blimpl regulates the transition of neonatal to adult intestinal epithelium[J]. Nat Commun, 2011, 2: 452.
  • 2Walker WA, Iyengar RS. Breast milk, microbiota, and intestinal immune homeostasis[J]. Pediatr Res, 2015, 77(1/2): 220-228.
  • 3Chassin C, Kocur M, Pott J, et al. miR-146a mediates protective innate immune tolerance in the neonate intestine [J]. Cell Host Microbe, 2010, 8(4): 358-368.
  • 4Osaki LH, Gama P. MAPK signaling pathway regulates p27 phosphorylation at threonin 187 as part of the mechanism triggered by early-weaning to induce cell proliferation in rat gastric mucosa[J]. PLoS One, 2013, 8(6): e66651.
  • 5Iliopoulos D, Jaeger SA, Hirsch HA, et al. STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer[J]. Mol Cell, 2010, 39(4): 493-506.
  • 6Chen T, Huang Z, Wang L, et al. MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake,and ORP9 expression in oxLDL-stimulated monocyte/ macrophages[J]. Cardiovasc Res, 2009, 83(1): 131-139.
  • 7Shaked I, Meerson A, Wolf Y, et al. MicroRNA-132 potentiates cholinergic anti-inflammatory signaling by targeting acetylcholinesterase[J]. Immunity, 2009, 31(6): 965-973.
  • 8Schuhe LN, Westermann A J, Vogel J. Differential activation and functional specialization of miR-146 and miR-155 in innate immune sensing [J]. Nucleic Acids Res, 2013, 41(1): 542-553.
  • 9Neu J. The developing intestinal microbiome: probiotics and prebiotics[J]. World Rev Nutr Diet, 2014, 110: 167- 176.
  • 10刘芳君,邓春,郭春宝,符州,刘恩梅,龚财惠.新生小鼠高氧急性损伤中TLR4的表达[J].免疫学杂志,2013,29(7):593-596. 被引量:2

二级参考文献57

  • 1Kallet RH, Matthay MA. Hyperoxic acute hung injury[J].Respir Care, 2013, 58(1): 123-141.
  • 2Yang HZ, Wang JP, Mi S, et al. TLR4 activity is required in the resolution of pulmonary inflammation and fibrosis after acute and chronic lung injury [J]. Am J Pathol, 2012, 180(1): 275-292.
  • 3Bhandari V, Choo Wing R, Homer R,I, et al. Increased hyperoxia-induced mortality and acute lung injury in IL- 13 null mice[J]. J Immunol, 2007, 178(8): 4993-5000.
  • 4Gore A, Muralidhar M, Espey MG, et al. Hyperoxia sensing: from molecular mechanisms to significance in disease[J]. J Immunotoxicol, 2010, 7(4): 239-254.
  • 5Dos Santos CC. Hyperoxic acute lung injury and ventilator- induced/associated lung injury: new insights into intracellular signaling pathways[J]. Crit Care, 2007, 11 (2): 126.
  • 6Olivant Fisher A, Husain K, Wolfson MR, et al. Hyperoxia during one lung ventilation: inflammatory and oxidative responses[J]. Pediatr Pulmonol, 2012, 47(10): 979-986.
  • 7Prows DR, Winterberg AV, Gibbons WJ Jr, et al. Reciprocal backcross mice confirm major loci linked to hyperoxic acute lung injury survival time [J]. Physiol Genomics, 2009, 38(2): 158-168.
  • 8Rogers LK, Tipple TE, Nelin LD, et al. Differential responses in the lungs of newborn mouse pups exposed to 85% or >95% oxygen[J]. Pediatr Res, 2009, 65(1): 33-38.
  • 9Kovach MA, Standiford TJ. Toll like receptors in diseases of the lung[J]. Int Immunopharmacol, 2011, 11(10): 1399- 1406.
  • 10Lorne E, Dupont H, Abraham E. Toll-like receptors 2 and 4: initiators of non-septic inflammation in critical care medieine?[J]. Intensive Care Med, 2010, 36(11): 1826- 1835.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部