期刊文献+

热变形条件对2124铝合金流变应力和显微组织的影响 被引量:3

Influence of Hot Deformation Condition on Flow Stress and Microstructure of 2124 Aluminum Alloy
下载PDF
导出
摘要 采用Gleeble热模拟试验机对2124铝合金进行热压缩试验,通过分析合金在高温塑性变形过程中的流变应力变化规律,以及利用光学显微镜和透射电镜观察合金在热变形过程中的显微组织演变,探讨了不同变形温度和应变速率对合金热塑性变形能力的影响。结果表明,2124铝合金在热变形中的流变应力稳态值随热变形温度的升高或应变速率的减小而增大,可用双曲正弦形式的本构方程来描述热变形条件和流变应力的关系,合金的变形激活能为170.13 k J/mol。在较低变形温度或较高应变速率下,热变形后合金组织中存在大量位错缠结和位错墙,软化机制主要为动态回复。随变形温度的升高或者应变速率的降低,该合金组织中出现了再结晶晶粒,软化机制逐渐向动态再结晶转变。 The hot compression tests of 2124 Al alloy at different temperatures and strain rates were performed on Gleeble thermal simulation machine.The variation of flow stress was investigated.The microstructure evolution during hot deformation was observed by optical microscope and transmission electron microscope.The results show that the flow stress of 2124 Al alloy increases with increasing temperature and strain rate.The relationship between hot deformation and flow stress can be described by constitutive equation in the form of hyperbolic sine.The hot deformation activation energy is170.13 k J/mol.At low temperature or high strain rate,a mass of dislocation tangles and dislocation walls exist in the deformed alloy,thus,the softening mechanism is mainly dynamic recovery.With the increase of deformation temperature or the decrease of strain rate,the recrystallized grains appear in the alloy,which can represent that the softening mechanism of the alloy transforms into dynamic recrystallization.
出处 《热加工工艺》 CSCD 北大核心 2015年第10期76-79,83,共5页 Hot Working Technology
基金 高性能2124铝合金热变形加工性能研究(13C237)
关键词 2124铝合金 热压缩变形 流变软化 显微组织 2124 aluminum alloy hot compression deformation flow softening microstructure
  • 相关文献

参考文献13

  • 1王昌臻,潘清林,何运斌,邹亮,尹志民,聂波,何振波.2124铝合金热轧厚板的热处理制度[J].中南大学学报(自然科学版),2007,38(3):386-393. 被引量:27
  • 2Huang X, Zhang H, Han Y, et al. Hot deformation behavior of 2026 aluminum alloy during compression at elevated temperature[J]. Materials Science and Engineering,2010,A527 (3) :485-490.
  • 3李成侣,潘清林,刘晓艳,何运斌,李文斌.2124铝合金的均匀化热处理[J].中国有色金属学报,2010,20(2):209-216. 被引量:34
  • 4Smith G W. Precipitation kinetics in solutionized aluminum al- loy 2124: Determination by scanning and isothermal calorimetry [J]. Thermochimica Acta, 1998,317(1)7-23.
  • 5裴和中,尹作升,张国亮,刘远勇.2024与2124铝合金电偶腐蚀行为的对比研究[J].中国腐蚀与防护学报,2012,32(2):133-136. 被引量:5
  • 6聂辉文,潘清林,聂俊红.时效处理对2124铝合金预拉伸厚板微观组织与腐蚀行为的影响[J].航空材料学报,2014,34(2):22-28. 被引量:8
  • 7Lapovok R, Loader C, Torre F H, et al. Microstructure evolution and fatigue behavior of 2124 aluminum processed by ECAE with back pressure [J]. Materials Science and Engineering, 2006, A 425(1/2): 36-46.
  • 8Makas A, Avallone J, Mackinnon R, et al. Variability on nucleation and growth of short fatigue cracks due to material anisotropy in aluminum 2024-T351 [J]. Journal of Intelligent Material Systems and Structures,2013,24(17): 2148-2167.
  • 9Poirie J P. High temperature plastic deformation of crystals [M]. 大连:大连理工大学出版社.1989.
  • 10Zener C, Hollomon J H. Effect of strain-rate upon the plastic flow of steel[Z]. 1944,15:22-27.

二级参考文献66

共引文献92

同被引文献45

  • 1丁向群,何国求,陈成澍,刘小山,朱正宇.6000系汽车车用铝合金的研究应用进展[J].材料科学与工程学报,2005,23(2):302-305. 被引量:95
  • 2赵培峰,任广升,徐春国,沈智.6061铝合金材料常数的研究[J].塑性工程学报,2006,13(4):79-81. 被引量:14
  • 3张伟红,张士宏.NiTi合金热压缩实验数据的修正及其本构方程[J].金属学报,2006,42(10):1036-1040. 被引量:51
  • 4刘静安,谢水生.铝合金材料应用与开发[M].北京:冶金工业出版社,2011.5.
  • 5王昌臻,潘清林,何运斌,邹亮,尹志民,聂波,何振波.2124铝合金热轧厚板的热处理制度[J].中南大学学报(自然科学版),2007,38(3):386-393. 被引量:27
  • 6Mchugh K M, Lin Y, Zhou Y, et al. Microstructure evolution during spray rolling and heat treatment of 2124 AI [J]. Materials ScienceandEngineeringA,2008,477:26-34.
  • 7王祝堂,田荣璋.铝合金及其加工[M].长沙:中南大学出版社.2000:64-67.
  • 8Li P Y, Xiong B Q, Zhang Y A, et al. Temperature variation and solutions treatment of high strength AA 7050 [J]. Transaction of Noferrous Metals Society of China, 2012,22: 546-554.
  • 9Han N M, Zhang X M, Liu S D, et al. Effect of solution treatment on the strength and fracture toughness of aluminum alloy 7050 [J]. Journal of Alloys and Compounds,2011,509 (10):4138-4145.
  • 10HUANG X D, ZHANG H, HAN Y, et al. Hot deformation behavior of 2026 aluminum alloy during compression at elevated temperature[J]. Materials Science and Engineering A, 2010,527 (3) : 485-490.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部