期刊文献+

基于MFCC相关系数的语音感知哈希认证算法 被引量:8

Perceptual Hashing Based on Correlation Coefficient of MFCC for Speech Authentication
原文传递
导出
摘要 提出了一种基于梅尔频率倒谱系数相关性的语音感知哈希内容认证算法.该算法提取分段语音的声纹梅尔频率倒谱系数作为感知特征.为提高算法的安全性,算法利用伪随机序列作为密钥,计算得到梅尔频率倒谱系数与伪随机之间的相关度,最后量化相关值并加密生成感知哈希序列.语音认证过程中,采用相似性度量函数来衡量哈希序列之间的距离,同时与汉明距离方法进行了比较.仿真结果表明,该算法对语音内容保持操作,如重采样、MP3压缩等具有较好的鲁棒性,相似性度量函数也对语音篡改检测定位具有较高的灵敏性. A perceptual hashing algorithm for speech content authentication based on correlation coefficient of mel-frequency cepstrum coefficients (MFCC) was proposed. The MFCC of the framed speech signal is extracted as perceptual feature. The correlation coefficients between MFCC and a pseudo-random sequence, which is generated by keys for security, were calculated. Hash sequence is generated by quantifying the correlation coefficients and then scrambling. For audio authentication procedure, a new method, similarity metric, was used to measure the distance of hashes, which is compared with the hamming distance method. Simulations show that the algorithm is robust against content-preserving manipulations such as re-sampling, MP3 compression, and so on. It is very sensitive to tamper of speech by similarity metric.
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2015年第2期89-93,共5页 Journal of Beijing University of Posts and Telecommunications
基金 国家自然科学基金项目(61170226 61373180)
关键词 感知哈希 梅尔频率倒谱系数 语音认证 相关系数 篡改检测 perceptual Hashing Mel-frequency cepstrum coefficients speech authentication correlation coefficient tamper detection
  • 相关文献

参考文献10

  • 1牛夏牧,焦玉华.感知哈希综述[J].电子学报,2008,36(7):1405-1411. 被引量:98
  • 2Tang Zhenjun, Zhang Xianquan, Huang Liyan, et al. Robust image Hashing using ring-based entropies [ J ]. Signal Processing, 2013, 93 (7): 2061-2069.
  • 3Li Yuenan, Lu Zheming, Zhu Ce, et al. Robust image Hashing based on random Gabor filtering and dithered lat- tice vector quantization [ J 1. Image Processing, IEEE Transactions on, 2012, 21(4): 1963-1980.
  • 4陈慧婷,覃团发,唐振华,常侃.综合纹理统计模型与全局主颜色的图像检索方法[J].北京邮电大学学报,2011,34(S1):100-103. 被引量:3
  • 5Jiao Yuhua, Ji Liping, Niu Xiamu. Robust speech Has- hing for content authentication [ J ]. Signal Processing Letters, IEEE, 2009, 16(9): 818-821.
  • 6Chen Ning, Wan Wanggen. Robust speech Hash function [Jl. ETRIJournal, 2010, 32(2): 345-347.
  • 7Chen Ning, Wan Wanggen. Speech Hashing algorithm based on short-time stability [ C] //Artificial Neural Net- works-ICANN 2009. Cyprus: Artificial Neural Networks, 2009 : 426-434.
  • 8Nouri M, Farhangian N. Conceptual authentication speech hashing base upon hypotr- ochoid graph [ C] /// Telecommunications (IST), Sixth International Symposi- um on. Tehran: IEEE, 2012: 1136-1141.
  • 9Tang Zhenjun, Wang Shuozhong, Zhang Xinpeng, et al. Structural feature-based image hashing and similarity met- ric for tampering detection [ Jl. Fundamenta Informati- cae, 2011, 106(l): 75-91.
  • 10Chen Ning, Wan Wanggen. Robust audio hashing based on discrete-wavelet-transform and non-negative matrix factorization [ J ]. Communications IET, 2010, 4 ( 14 ) : 1722-1731.

二级参考文献36

  • 1王海霞,覃团发.综合MPEG-7中颜色特征的图像检索方法[J].计算机应用研究,2005,22(3):164-165. 被引量:20
  • 2王甦 汪安圣.认知心理学[M].北京:北京大学出版社,1992..
  • 3A W M Smeulders, et al. Content-based image retrieval at the end of the early years[ J] .IEEE Transactions on Pattern Analysis and Machine Intelligence,2000, 22(12) : 1349 - 1380.
  • 4B B Zhu,M D Swanson, A H Tewfik.When seeing isn't believing[ J] .IEEE Signal Processing Magazine,2004,21 (2):40 - 49.
  • 5H G Schaathun. On watermarking/fingerprinting for copyright protection[ A]. Proc. of 1st International Conference on Innovative Computing, Infonnation and Control (ICICIC) [ C .]. Beijing: IEEE, 2006. (3) :50 - 53.
  • 6J Haitsma, T Kalker. A highly robust audio fingerprinting system[A]. Proc of 3rd International Conference on Music Informarion Retrieval(ISMIR) [ C ]. Paris: IRCAM, 2002.107 - 115.
  • 7P Cano, E Batlle, T Kalker, J Haitsma. A review of audio fingerprinting [ J ]. Journal of VLSI Signal Processing, 2005,41 : 271 - 284.
  • 8H Ozer, B Sankur, N Memon, E Anarim. Perceptual audio hashing functions[ J]. EURASIP Journal on Applied Signal Processing, 2005,12:1780- 1793.
  • 9http://isis. poly. edu/index. php? page = 1&project = 1094.
  • 10P Cano,E Batlle,et al.Robust sound modeling for song detectionin broadcast audio[ A]. Proc of AES 112th Internation Convention[ C]. Munich: AES, 2002.1 - 7.

共引文献99

同被引文献27

引证文献8

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部