摘要
传统轨迹压缩算法要对每个具体轨迹进行建模与存储,未利用路网对轨迹的限制,故空间性能较差.针对该问题,首先对路网空间进行建模,继而探索个体轨迹的活动规律.提出基于轨迹的空间信息和轨迹的时态信息相结合的轨迹间投影距离度量(SRTD);提出基于SRTD距离相似轨迹双层压缩算法(SDTC),实验表明,SDTC算法相对于原始算法降低了存储空间开销;SDTC算法精度较原始算法有较大改进.
The traditional trajectories compression methods handle each trajectory individually, but it does not take into account the actual route situations, so it shows limited space performance. To solve this problem, the route network model is designed, and regulations of these trajectories are deeply explored. The main contributions include: 1 ) proposing the distance measure SRTD (shadow reference trajectory distance) which incorporates the space and time information of trajectories together; 2) proposing an algorithm called SDTC (SRTD distance based trajectory compression), which compresses dual-ayer trajectories based on SRTD distance similarities. Experiments show that, compared with traditional methods, SDTC algorithm significantly reduces the storage consumption, and is of good precision.
出处
《北京邮电大学学报》
EI
CAS
CSCD
北大核心
2015年第2期94-97,103,共5页
Journal of Beijing University of Posts and Telecommunications
基金
国家自然科学基金项目(61103043
61173099
U1233118)
国家"十二五"科技支撑计划项目(2012BAG04B02)
武汉大学软件工程国家重点实验室开放基金项目(SKLSE2012-09-26)
关键词
全球定位系统轨迹
轨迹压缩
路网空间
轨迹距离
Global positioning system trajectory
trajectory compression
road network
trajectory distance