期刊文献+

直升机旋翼桨-涡干扰状态非定常气弹载荷高精度预估 被引量:4

High-precision prediction on unsteady aeroelastic loads of helicopter rotors under blade-vortex interaction condition
原文传递
导出
摘要 为准确计算直升机旋翼在复杂的桨-涡干扰(BVI)状态下的气弹载荷,在刚性旋翼计算流体力学方法中引入桨叶弹性变形的影响,建立了一套适合于弹性旋翼BVI状态气动特性分析的计算流体力学/计算结构力学(CFD/CSD)耦合方法.CFD模块对Reynolds averaged Navier-Stokes(RANS)/Euler方程进行求解,并采用双时间法推进和Baldwin-Lomax(B-L)湍流模型.CSD模块采用中等变形梁假设的有限元模型,通过Newmark-Beta方法求解桨叶运动方程.通过代数变换方法进行桨叶网格变形,并建立一个适于流场/结构信息交换的CFD/CSD耦合方法.在分别验证CFD和CSD模块的有效性的基础上,开展UH-60A直升机旋翼的BVI状态载荷分析,并与飞行测试数据进行了对比.计算结果表明:相比于旋翼综合分析中的升力线理论和刚性旋翼CFD方法,耦合的CFD/CSD方法可以更准确地预测BVI状态气弹载荷,并有效地模拟桨叶前行侧方位角和后行侧方位角附近的BVI现象,对BVI导致的升力波动幅值和相位的计算结果均与试验值吻合良好. In order to obtain accurate aerodynamics loads of helicopter rotors under com- plex blade-vortex interaction (BVI) condition, blade deflections were introduced into rigid rotor CFD analysis and a computational fluid dynamics/computational structural dynamics (CFD/CSD) coupling method suitable for aerodynamic characteristics analysis of elastic ro- tors under BVI condition was developed. The CFD module solved Reynolds averaged Navier- Stokes (RANS)/Euler equations based on dual time-stepping algorithm and Baldwin-Lomax (B-L) turbulence model. The CSD module employed finite element model of moderate deflec- tion beam theory, and the blade equations of motion were calculated by using Newmark-Beta method. Blade deformations were accomplished through algebraic grid deformation method and a CFD/CSD coupling strategy was developed for exchanging fluid/structure information. The established CFD and CSD modules were validated by UH-60A elastic blade respectively, and aerodynamics loads of UH-60A rotor were analyzed under BVI condition and compared with flight test data. The calculated results demonstrated that coupled CFD/CSD method can acquire more accurate aerodynamics loads under BVI condition than lifting-line method in rotor com-prehensive analysis and rigid rotor CFD method, and the flow phenomena near azimuth of advancing blade and azimuth of retreating blade under BVI condition are well captured in detail. The calculated results of the lift's phase and amplitude caused by BVI agree well with the experimental data.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2015年第5期1267-1274,共8页 Journal of Aerospace Power
基金 国家高技术研究发展计划(2012AA112201)
关键词 旋翼 桨-涡干扰状态 计算流体力学/计算结构力学耦合 气弹载荷 直升机 rotor blade-vortex interaction (BVI) condition CFD/CSD coupling aeroelastic loads helicopter
  • 相关文献

参考文献17

  • 1Conlisk A T. Modern helicopter rotor aerodynamics[J]. Progress in Aerospace Science,2001,37(5):419-476.
  • 2徐国华,招启军.直升机旋翼计算流体力学的研究进展[J].南京航空航天大学学报,2006,51(1):5-21.
  • 3Tung C, Caradonna F X, Johnson W. The prediction of transonic {lows on an advancing rotor[J]. Journal of the American Helicopter Society, 1986,32(7) :4-9.
  • 4Potsdam M, Yeo H,Johnson W. Rotor airloads prediction using loose aerodynamic/structural coupling[J]. Journal of Aircraft, 2006,43 (5), 732-742.
  • 5Widnall S. Helicopter noise due to blade-vortex interaction [J]. Journal of the Acoustical Society of America, 1971,50 (1) :354-365.
  • 6Algermissen G,Wanger S. Computation of helicopter BVI noise by coupling free-wake, Euler and Kirchhoff method [Rl. AIAA 98-2238,1998.
  • 7Kim J W, Park S H, Yu Y H. Euler and Navier-Stokes simulations of helicopter rotor blade in forward flight using an overlapped grid solver[R]. AIAA-2009-4268,2009.
  • 8Wissink A, Jayaraman B, Datta A, et al. Capability en- hancements in version 3 of the Helios high-fidelity rotor- craft simulation eode[R]. AIAA-2012-0713,2012.
  • 9Jameson A. Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings[R]. AIAA 91-1596,1991.
  • 10Baldwin B, Lomax H. Thin-layer approximation and alge- braic model for separated turbulent flows[R]. AIAA 78- 257,1978.

二级参考文献15

  • 1解福田,宋文萍,韩忠华.低耗散格式在旋翼前飞气动噪声预测中的应用研究[J].西北工业大学学报,2009,27(2):151-156. 被引量:1
  • 2李亭鹤,阎超,李跃军.重叠网格技术中割补法的研究与改进[J].北京航空航天大学学报,2005,31(4):402-406. 被引量:6
  • 3李春华,徐国华.悬停和前飞状态倾转旋翼机的旋翼自由尾迹计算方法[J].空气动力学学报,2005,23(2):152-156. 被引量:34
  • 4BAGAI A,LEISHMAN J G.Rotor free-wake modeling using a pseudo implicit relaxation algorithm[J].Journal of Aircraft,1995,32(6):1276-1285.
  • 5KANG H J,KWON O J.Unstructured mesh NavierStokes calculations of the flow field of a helicopter rotor in hover[J].Journal of the American Helicopter Society,2002,47:90-99.
  • 6SLOTNICK J P,KANDULA M,BUNING P G.Navier-Stokes simulation of the Space Shuttle launch vehicle flight transonic flowfield using a large scale chimera grid system[A].12th AIAA Applied Aerodynamics Conference[C].Colorado Springs,Colorado,USA,1994.
  • 7MEAKIN R L.Object X-rays for cutting holes in composite overset structured grids[A].15th AIAA Computational Fluid Dynamics Conference[C].Anaheim,California,USA,2001.
  • 8ROGERS S E,DIETZ W E,SUHS N E.PEGASUS 5:an automated preprocessor for overset-grid computational fluid dynamics[J].AIAA Journal,2003,41 (6):1037-1045.
  • 9MEAKIN R.A new method for establishing intergrid communication among systems of overset grids[A].10th AIAA Computational Fluid Dynamics Conference[C].Honolulu,Hawaii,USA,1991.
  • 10POMIN H,WAGNER S. Navier-Stokes analysis of helicopter rotor aerodynamics in hover and forward flight:Rotor wakes[J].Journal of Aircraft,2002,39(5):813-821.

共引文献19

同被引文献22

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部