期刊文献+

基于Hausdorff距离的分形研究

Fractal Research on Hausdorff Distance
下载PDF
导出
摘要 把Hausdorff距离应用到分形研究中,并编程完成了任意两个广义M-J集间Hausdorff距离的计算,通过Hausdorff距离的值可以得到广义M-J集间的匹配程度。为进一步研究广义M-J集提供了一种新方法。 Hausdorff distance is a measure of the degree of similarity between the two point-sets, Hausdorff distance is applied to the research of generalized M-J sets.Hausdorff distance between any generalized M-J sets can be obtained for the first time.And the degree of matching between M-J sets can be obtained via Hausdorff distance.This provides a new tool for the further study of the generalized M-J sets.
作者 王春梅
出处 《滨州学院学报》 2015年第2期73-76,共4页 Journal of Binzhou University
基金 山东省自然科学基金资助项目(ZR2014FQ019)
关键词 HAUSDORFF 距离 广义 M-J 逃逸时间算法 Hausdorff distance generalized M-J sets escape time algorithm
  • 相关文献

参考文献10

  • 1Mandelbrot B B. The fractal geometry of nature[M]. San Fransisco. Freeman W H, 1982:5 -47.
  • 2Gujar U G,Bhavsar V C,Vangala N. Fractals in ages from z--z -c in the Complex z-plane[J]. Computers I Graphics, 19 9 2,16 ( 1 ) : 4 5 - 4 9.
  • 3Glynn E F. The evolution of the Gingerbread Man[J]. Computers g> Graphics, 1991(4) :579 - 582.
  • 4Lakhtakia A. On the symmetries of the Julia sets for the process z--z-l-c[J]. J Phys A.Math Gen, 1987,20(11) :3533 - 3535.
  • 5Dhurandhar S V,Bhavsar V C,Gujar U G. Analysis of z -plane fractals images from z-*-z -c for a 0[J]. Computers g Graphics,1993,17(1):89- 94.
  • 6Wang X Y,Liu X D,Zhu W Y,et al. Analysis of c - plane fractal images from z-*-zq-c for a%0 [J]. Fractals,2000,8(3) .307 - 314.
  • 7Sasmor J C. Fractals for functions with 615. rational exponent[J]. Computers Graphics, 2004(4) ..601.
  • 8Romera M,Pastor G,Alvarez G, et al. External arguments of Douady cauliflowers in the Mandel brot set[J]. Computers Graphics,2004,28(5) :437 -449.
  • 9Wang X Y,Chang P J. Research on fractal structure of generalized M-J sets utilized Lyapunov exponents and periodic scanning techniques[J]. Applied Mathematics Computation, 2006 (2) : 1007 - 1025.
  • 10Geum Y H,Kim Y I. Accurate computation of component centers in the degree-n bifurcation set [J]. Computers I Mathematics with Applications,2004,48(1-2) :163- 175.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部