期刊文献+

MACT:高通量众核处理器离散访存请求批量处理机制

MACT:Discrete Memory Access Requests Batch Processing Mechanism for HighThroughput Many-Core Processor
下载PDF
导出
摘要 网络服务等新型高通量应用的迅速兴起给传统处理器设计带来了巨大的挑战.高通量众核处理器作为面向此类应用的新型处理器结构成为研究热点.然而,随着片上处理核数量的剧增,加之高通量应用的数据密集型特点,"存储墙"问题进一步加剧.通过分析高通量应用访存行为,发现此类应用存在着大量的细粒度访存,降低了访存带宽的有效利用率.基于此分析,在高通量处理器设计中通过添加访存请求收集表(memory access collection table,MACT)硬件机制,结合消息式内存机制,用于收集离散的访存请求并进行批量处理.MACT硬件机制的实现,提高了访存带宽的有效利用率,同时也提高了执行效率;并通过时间窗口机制,确保访存请求在最晚期限之前发送出去,保证任务的实时性.实验以典型高通量应用WordCount,TeraSort,Search为基准测试程序.添加MACT硬件机制后,访存数量减少约49%,访存带宽提高约24%,平均执行速度提高约89%. The rapid development of new high-throughput applications,such as Web services,brings huge challenges to traditional processors which target at high-performance applications. Highthroughput many-core processors, as new processors, become hotspot for high-throughput applications.However,with the dramatic increase in the number of on chip cores,combined with the property of memory intensive of high throughput applications,the "memory wall"problems have intensified.After analyzing the memory access behavior of high throughput applications,it is found out that there are a large proportion of fine-grained granularity memory accesses which degrade the efficiency of bandwidth utilization and cause unnecessary energy consumption.Based on this observation,in high-throughput many-core processors design, memory access collection table(MACT)is implemented to collect discrete memory access requests and to handle them in batch under deadline constraint.Using MACT hardware mechanism,both bandwidth utilization and execution efficiency have been improved.QoS is also guaranteed by employing time-window mechanism,which insures that all the requests can be sent before the deadline.WordCount,TeraSort and Search are typical high-throughput application benchmarks which are used in experiments.The experimental results show that MACT reduces the number of memory accesses requests by 49% and improves bandwidth efficiency by 24%,and the average execution speed is improved by 89%.
出处 《计算机研究与发展》 EI CSCD 北大核心 2015年第6期1254-1265,共12页 Journal of Computer Research and Development
基金 国家"九七三"重点基础研究发展计划基金项目(2011CB302501) 国家"八六三"高技术研究发展计划基金项目(2012AA010901 2015AA011204) "核高基"国家科技重大专项基金项目(2013ZX0102-8001-001-001) 国家自然科学基金项目(61173007 61332009 61204047)
关键词 高通量处理器 访存请求收集表 时间窗口机制 高速缓冲存储器 便签式存储器 high throughput processor memory access collection table (MACT) time windowmechanism cache scratchpad memory(SPM)
  • 相关文献

参考文献30

  • 1Netlib. LINPACK [EB/OL]. [2015 -01-15]. http://www. netlib, org/linpack.
  • 2李国杰.大数据对计算机系统的挑战[J].中国计算机学会通讯,2013,9(12):33-35.
  • 3王元卓,靳小龙,程学旗.网络大数据:现状与展望[J].计算机学报,2013,36(6):1125-1138. 被引量:717
  • 4Ferdman Michael, Adileh Almutaz, Kocberber Onur, et al. Clearing the clouds: A study of emerging scale out workloads on modern hardware [C] //Proc of the 17th Int Conf on Architectural Support for Programming Languages and Operating Systems (ASPLOS'12). New York: ACM, 2012 37-48.
  • 5Zhan Jianfeng, Zhang Lixin volume throughput computing Sun Ninghui, et al, High Identifying and characterizing throughput oriented workloads in data centers [C] //Proc of Int Parallel and Distributed Processing Symp Workshops & PhDForum (IPDPSW'12). New York: ACM, 2012: 1712- 1721.
  • 6Han Yiding, Ancajas D M, Chakraborty K, et al. Exploring high throughput computing paradigm for global routin[J]. Very Large Scale Integration Systems, 2018, 22(1)~ 155- 167.
  • 7Murphy R. Memory: The center of the universe [C] //Proc of IEEE Workshop on Microelectronics and Electron Devices (WMED'13). Piscataway, NJ: IEEE, 2013:1947-3834.
  • 8Intel. Product brief: The Intel Xeon Phi product family [EB/ OL].[2015- 01-15]. http://www/intel, com/content/www/us/ en/ high-performance-computing/high performance xeon-phi coprocessor brief, html.
  • 9EZchip Semiconductor Ltd. 7g-Core processor for intelligent networking and video processing [EB/OL]. [2015-01 -15]. http://www, tilera, com/products]?ezchip: 585&spage: 618.
  • 10ITRS. 2013 ITRS summary files [EB/OL]. [2015-01- 15]. http://www, itrs. net.

二级参考文献120

  • 1Big data. Nature, 2008, 455(7209): 1-136.
  • 2Dealing with data. Science,2011,331(6018): 639-806.
  • 3Holland J. Emergence: From Chaos to Order. RedwoodCity,California: Addison-Wesley? 1997.
  • 4Anthony J G Hey. The Fourth Paradigm: Data-intensiveScientific Discovery. Microsoft Research, 2009.
  • 5Phan X H, Nguyen L M,Horiguchi S. Learning to classifyshort and sparse text Web with hidden topics from large-scale data collections//Proceedings of the 17th InternationalConference on World Wide Web. Beijing, China,2008:91-100.
  • 6Sahami M, Heilman T D. A web-based kernel function formeasuring the similarity of short text snippets//Proceedingsof the 15th International Conference on World Wide Web.Edinburgh, Scotland, 2006: 377-386.
  • 7Efron M, Organisciak P,Fenlon K. Improving retrieval ofshort texts through document expansion//Proceedings of the35th International ACM SIGIR Conference on Research andDevelopment in Information Retrieval. Portland, OR, USA,2012: 911-920.
  • 8Hong L,Ahmed A, Gurumurthy S,Smola A J, Tsioutsiou-liklis K. Discovering geographical topics in the twitterstream//Proceedings of the 21st International Conference onWorld Wide Web(WWW 2012). Lyon, France, 2012:769-778.
  • 9Pozdnoukhov A,Kaiser C. Space-time dynamics of topics instreaming text//Proceedings of the 3rd ACM SIGSPATIALInternational Workshop on Location-Based Social Networks.Chicago-IL,USA, 2011: 1-8.
  • 10Sun Yizhou,Norick Brandon, Han Jiawei, Yan Xifeng, YuPhilip S,Yu Xiao. Integrating meta-path selection with user-guided object clustering in heterogeneous information net-works/ /Proceedings of the 18th ACM SIGKDD InternationalConference on Knowledge Discovery and Data Mining.Beijing, China, 2012: 1348-1356.

共引文献716

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部