期刊文献+

基于单向函数的伪随机数发生器 被引量:6

Pseudorandom Number Generators Based on One-Way Functions
下载PDF
导出
摘要 伪随机数发生器(pseudorandom number generator,PRNG)是重要的密码学概念.基于单向函数的伪随机数发生器起始于1982年的BMY发生器,将单向函数反复迭代,周期性地输出伪随机序列.单向函数的性质和种子长度关系到发生器的可实现性和安全性,是此类发生器的2个重要参数.在分析现有工作的基础上,改进了单向函数的随机化迭代方式,基于不可逆性证明了迭代过程的安全性.迭代方式的改进消除了单向函数的长度保持性质,采用一般的压缩规范单向函数和通用散列函数构建伪随机数发生器.输出级与BMY发生器结构类似,以迭代函数的核心断言作为伪随机序列.基于与真随机序列的不可区分性,证明了伪随机数发生器的安全性.所构建的伪随机数发生器与现有同类发生器结构类似,但放松了对单向函数性质的要求,增强了可实现性,减小了种子长度,提高了效率. Pseudorandom number generators (referred as PRNG) is an important cryptographic primitive that was first introduced and. formalized as BMY generator in 1982. The PRNG based on one-way functions is constructed by iterating a one way function (()WF) on a random seed and generating pseudorandom sequences periodically. The seed length and the property of the one-way function are two important factors of this kind PRNG, which measure the efficiency and the security of the PRNG. The security of the latest PRNG of this type relies on one way function of length preserving or one-way permutation that is hard to be obtained. This paper revisits the current randomized iteration technique and makes improvement on the iteration process by expanding the outputs of one-way function. The new technique, which is called expanded randomized iteration, eliminates the length preserving property of the one-way function. On the basis of the expanded randomized iteration, our construction uses the general compression regular one-way function and universal hash function as the main components. In the BMY case, a hardcore-bit of each iteration step is taken as the output of the pseudorandom sequence. Our scheme adopts the similar structure as the current ones but relaxes the requirement of the property of the one-way function, reduces the seed length and improves the efficiency. Finally, the security of the iteration is proved irreversible and the security of the proposed pseudorandom generator is proved undistinguishable from the real random sequence.
出处 《计算机研究与发展》 EI CSCD 北大核心 2015年第6期1394-1399,共6页 Journal of Computer Research and Development
基金 山东省科技发展计划基金项目(2013YD01038)
关键词 伪随机数发生器 单向函数 随机化迭代 核心断言 通用散列函数 pseudorandom number generator(PRNG) one way function(OWF) randomized iterate hard core predicate universal Hash function
  • 相关文献

参考文献18

  • 1Ishai Y, Kushilevitz E, Li X, et al. Robust Pseudorandom Generators [G] //Automata, Languages, and Programming. Berlin: Springer, :;:013:576-588.
  • 2刘建东,杨凯,余有明.改进型耦合帐篷映像格子模型及其性能分析[J].计算机研究与发展,2011,48(9):1667-1675. 被引量:8
  • 3王福来.基于复合符号混沌的伪随机数生成器及加密技术[J].物理学报,2011,60(11):183-189. 被引量:10
  • 4Iftach H, Omer R, Salil V. Efficiency improvements in constructing pseudorandom generators from one way functions [C] //Proc of the 42nd Annum ACM Symp on Theory of Computing(STOC). New York: ACM, 2010: 437-446.
  • 5Blum M, Micali S. How to generate cryptographically strong sequences of pseudo random bits [C] //Proc of Annual Symp on Foundations of Computer Science. Piscataway, NJ: IEEE, 1982:112-117.
  • 6Yao A C. Theory and application of trapdoor functions [C] // Proc of IEEE Symp on Foundations of Computer Science. Piscataway, NJ: IEEE, 1982:80-91.
  • 7Hastad J, Impagliazzo R, Levin L A, et al. A pseudorandom generator from any one way function [J]. SIAM Journal of Computing, 1999, 29(4): 1364-1396.
  • 8Impagliazzo R, Levin L A, Luby M. Pseudo random generation from one way functions(extended abstracts)[C] // Proc of the 21st Annual ACM Symp on Theory of Computing. New York: ACM, 1989:12-24.
  • 9Hfistad J. Pseudo-random generators under uniform assumptions [C] //Proc of the 21st Annual ACM Syrup on Theory of Computing. New York: ACM,1990:395-404.
  • 10Vadhan S, Zheng C J. Characterizing pseudoentropy and simplifying pseudorandom generator constructions [C] //Proc of the 44th Symp on Theory of Computing. New York~ ACM, 2012:817-836.

二级参考文献23

共引文献16

同被引文献52

  • 1肖化昆.系统仿真中任意概率分布的伪随机数研究[J].计算机工程与设计,2005,26(1):168-171. 被引量:31
  • 2杨振海,程维虎.非均匀随机数产生[J].数理统计与管理,2006,25(6):750-756. 被引量:18
  • 3曾丽华,熊璋,张挺.Key值更新随机Hash锁对RFID安全隐私的加强[J].计算机工程,2007,33(3):151-153. 被引量:34
  • 4朱晓玲,姜浩.任意概率分布的伪随机数研究和实现[J].计算机技术与发展,2007,17(12):116-118. 被引量:23
  • 5DonaldE.Knuth.计算机程序设计艺术:半数值算法(第2卷)[M].第三版.北京:机械工业出版社,2008.
  • 6Alimohammad A, Fard S F, Cockburn B F, et al. A compact and accurate Gaussian variate generator[J]. IEEE Transactions on VLSI Systems,2008,16(5) : 517-527.
  • 7Pierre L Ecuyer. Uniform random number generation; A Review. Simulation Conference Proceedings, 1997. Winter Vol- ume 7-10.
  • 8Ames S, Gennaro R and Venkitasubramaniam M. The generalized randomized iterate and its application to new efficient constructions of UOWHFs from regular one-way functions [C]. Advances in Cryptology-ASIACRYPT 2012. Berlin; Springer, 2012 .. 154-171.
  • 9Boldyreva A, Kumar V. A new pseudorandom generator from collision-resistant hash functions[C]. Proc of the Cryptogra- phers" Track at the RSA. Berlin..Springer,2012;187-202.
  • 10Haitner I, Reingold O, Vadhan S P. Efficiency improvements in constructing pseudorandom generators from one-way func- tions[C]. Proc of the 42nd Annual ACM Syrup on Theory of Computing(STOC). New York.. ACM, 2010..437-446.

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部