期刊文献+

GaSe晶体的双光子吸收对太赫兹输出的影响 被引量:3

Two-photon Absorption Attenuated THz Generation in GaSe
下载PDF
导出
摘要 根据光整流效应,利用超快激光脉冲泵浦GaSe晶体实现了0.2-2.5 THz的宽带太赫兹辐射输出。禁带中的电子在两个800 nm光子的作用下激发到导带中形成自由载流子,进而吸收所产生的太赫兹辐射,最终导致太赫兹的输出随泵浦功率的增加而趋于饱和。为了研究双光子吸收对太赫兹输出的影响,测量了800nm处的GaSe晶体的双光子吸收系数,结果为0.165 cm/GW。通过对太赫兹输出实验数据的拟合,得到GaSe晶体中自由载流子对太赫兹输出的吸收截面为1×10^-15cm^2。本文的研究结果可用于优化GaSe晶体在强激光泵浦下的太赫兹转换效率。 The broadband THz generation from 0 . 2 to 2 . 5 THz was measured as a function of pump intensity in a single pure gallium selenide crystal based on the optical rectification of ultrafast laser pulses. Two-photon absorption at 800 nm can generate free charge carriers which can absorb the generated THz radiation, and finally attenuate THz output. The result indicates that the pump inten-sity dependence of ouput THz radiation changes from square to sub-linear relationship and the satu-ration of output THz radiation appears at high pump intensity. To study the impact of two photon ab-sorption on THz generation, the two photon absorption coefficient of GaSe at 800 nm is measured to be 0. 165 cm/GW, which is determined by the measured nonlinear transmission. The THz output fitting result taking account of the free charge carrier absorption cross section of 1 × 10^ -15 cm^2 is con-sistent with the experiment data very well. This estimation result can be used to optimize the conversion efficient of THz generation in GaSe crystal under intense laser pump.
出处 《发光学报》 EI CAS CSCD 北大核心 2015年第3期361-365,共5页 Chinese Journal of Luminescence
基金 激光与物质相互作用国家重点实验室开放基础研究课题(SKLLIM1012)资助项目
关键词 GaSe晶体 双光子吸收 太赫兹 吸收截面 GaSe crystal two photon absorption THz generation absorption cross section
  • 相关文献

参考文献20

  • 1Jepsen P U, Cooke D G, Koch M. Terahertz spectroscopy and imaging-modern techniques and applications [ J ]. Laser Photon. Rev. , 2011, 5 ( 1 ) : 124-166.
  • 2Ferguson B, Zhang X C. Materials for terahertz science and technology [J]. Nat. Mater. , 2002, 1(9) :26-33.
  • 3Ding Y J, Shi W. Widely tunable monochromatic THz sources based on phase-matched difference frequency generation in nonlinear-optical crystals : A novel approach [ J ]. Laser Phys. , 2006, 16 (4) :562-570.
  • 4Kaindl R A, Eickemeyer F, Woemer M, et al. Broadband phase-matched difference frequency mixing of femtosecond pul- ses in GaSe: Experiment and theory [J]. Appl. Phys. Lett., 1999, 75(8) :1060-1062.
  • 5Shi W, Ding Y J. A monochromatic and high-power terahertz source tunable in the ranges of 2.7 - 38.4 and 58.2 - 3 540 xm for variety of potential applications [ J]. Appl. Phys. Lett. , 2004, 84(10) :1635-1637.
  • 6Huber R, Brodschelm A, Tauser F, et al. Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz [J]. Appl. Phys. Lett. , 2000, 76(21) :3191-3193.
  • 7Ktibler C, Huber R, Leitenstorfer A. Ultrabroadband terahertz pulses : Generation and field-resolved detection [ J ]. Semi- cond. Sci. Technol. , 2005, 20(7):S128-S133.
  • 8Bao X G, Sun G, Ding Y J, et al. Investigation of symmetries of second-order nonlinear susceptibility tensor of GaSe crys- tals in THz domain [J]. Opt. Commun., 2011, 284(7) :2027-2030.
  • 9Vidal S, Degert J, Tondusson M, et al. Impact of dispersion, free carriers, and two-photon absorption on the generation of intense terahertz pulses in ZnTe crystals [J]. Appl. Phys. Lett. , 2011,98(19) :191103-1-3.
  • 10Hoffmann M C, Yeh K L, Hebling J, et al. Efficient terahertz generation by optical rectification at 1 035 nm [ J ]. Opt. Express, 2007, 15 ( 18 ) : 11706 -11713.

二级参考文献19

  • 1杨立书,鲁士平,程干超,杨琳,史保森,杜立人.在AgGase_2晶体中TEA CO_2激光的倍频产生[J].光学学报,1995,15(3):374-376. 被引量:7
  • 2YI Jiang,Yujie J D. Efficient harmonic generation of second, third, and fourth orders from Fourier-transform-limitedCO2 laser beam at 10.6 μm in GaSe crystals[J]. Optics Communications, 2009,282 .. 1452-1454.
  • 3Chemla D S, Kupecek P J, Robertson D S,et al. Sliver thiogallate,a new material with potential for infrared de- vices[J]. Opt. Comm., 1971,3(1): 29-31.
  • 4Shi W, Ding Y J. A monochromatic and high-power tera- hertz source tunable in the ranges of 2.7-38.4 and 58.2- 3540 μm for variety of potential applications[J]. Appl. Phys. Lett. ,2004,84(10) .. 1635-1637.
  • 5(俄罗斯)德米特里耶夫,古尔扎姜,尼科戈相,非线性光学晶体手册[M].王继扬,吴以成译.高等教育出版社,2009,161.162.
  • 6Schunemann P G. Recent advances in nonlinear materials for 5-20 μm wavelength generation[A]. Technical Digest CLEO[C]. 2000,353-354.
  • 7Zavrazhnova A,Naumova A, Sideyb V, et al. Composition control of low-volatile solids through chemical vapor transport reactions. II1. The example of gallium monose- lenide: Control of the polytypic structure, non-stoichiom- etry and properties[J]. Thermochimica Acta, 2012,527, 118-124.
  • 8Zernike F, Midwinter J E. Applied nonlinear optics[M]. New York..Wiley., 1973,64-65.
  • 9Abdullaev G B, Kulevskii L A, Prokhorov A M, et al. GaSe,A new effective material for nonlinear optics [J]. JETP Lett. ,1972,16:90-92.
  • 10Vodopyanov K L. Kulevskii L A. New dispersion relation- ships for GaSe in the 0. 65-18 μm spectral region[J]. Opt. Commun., 1995, 118: 375-378.

共引文献1

同被引文献26

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部