期刊文献+

新的递推有界GM回归估计算法

A New Recursive Bounded GM Estimator for Regression
下载PDF
导出
摘要 提出一种新的递推有界广义极大似然类(GM)回归估计器,新估计器所用的风险函数基于更一般的框架,并采用有界M-估计函数.设计一个新的权函数拒绝或降低异常点对估计结果的影响,并增加一个增广项,提出一种具有较强自适应能力的面向自回归(AR)模型参数估计的算法.仿真结果表明:提出的GM回归估计器及面向AR模型的算法对异常点不利影响(主要来自于回归变量中的加性异常点)的抑制效果均优于其他GM估计器;在参数不做任何调整的情况下,面向AR模型的算法对非平稳环境下的估计具有良好的估计精度和收敛性. A new recursive bounded GM estimator for regression is proposed. Unlike other GM estimators, the new esti- mator is based on one more general framework and uses a cost function with bounded M-estimate functiorL The new esti- mator, in effect, is a recursive one-step iteration solution of the "normal equations" corresponding to the cost function. In the new estimator, a weight function is designed to reject or to reduce the influence of the outliers. Furthermore, by in-- troducing an augment variable, the proposed estimator is modified to a very adaptive version for the estimation of autore- gressive parameters. The simulation results show that both the proposed estimator and its modification are more effective than other related estimators in suppressing the adverse influence of outliers; the proposed estimator, with the same set- tings, can keep a high accuracy and stable convergence performance in a variety of non-stationary environments.
出处 《华侨大学学报(自然科学版)》 CAS 北大核心 2015年第3期359-364,共6页 Journal of Huaqiao University(Natural Science)
基金 国家自然科学基金资助项目(11101323) 陕西省教育厅自然科学专项基金(12JK0879)
关键词 GM估计器 鲁棒估计 AR模型 加性异常点 generalized maximum likelihood type stimator robust estimation autoregressive parameters additive outli-ers
  • 相关文献

参考文献11

  • 1HUBER P J. Robust regression: Asymptotics, conjectures and monte carlo[J]. Annals of Statistics, 1973, 1 (5) .. 799-821.
  • 2CAMPBEL K. Recursive computation of M-estimates for the parameters of a finite autoregressive process[J]. The Annals of Stat, 1982,10(2) : 442-453.
  • 3ANTOCH J, EKBLOM H. Recursive robust regression computational aspects and comparison[J]. Computational Statistics and Data Analysis, 1995,19(2) : 115-128.
  • 4SEJLING K, et al. Methods for recursive robust estimation of AR parameters[J]. Computational Atatistics and Data Analysis, 1994,17(5) : 509-536.
  • 5PHAM D S, ZOUBIR A M. A sequential algorithm for robust parameter estimation[J]. IEEE Signal Processing Lett,2005,12(1) : 21-24.
  • 6VEGA L R, REY H, BENESTY J, et al. A robust recursive least squares algorithm[J]. IEEE Trans Signal Process, 2009,57(3) : 1209-1216.
  • 7KRASKER W S,WELSCH R E. Efficient bounded-influence regression estimation[J]. Journal of the American Sta- tistical Association, 1982,77(379) : 595-604.
  • 8GRILLENZONI {2. Recursive generalized M-estimators of system parameters [J]. Technometrics, 1997,39 (2) : 211 - 224.
  • 9ENGIUND J E. Recursive versions of the algorithm by Krasker and Welsch[J]. Sequential Analysis, 1991,10(3/4) : 211-234.
  • 10MARONNA R A, MARTIN R D, YOHAI V J. Robust statistics: Theory and methods[M]. West Sussex: John WileySons, 2006 : 888-889.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部