期刊文献+

Enhanced Magnetic and Dielectric Properties in Low-Content Tb-Doped BiFeO3 Nanoparticles

Enhanced Magnetic and Dielectric Properties in Low-Content Tb-Doped BiFeO3 Nanoparticles
下载PDF
导出
摘要 Bi1-xTbxFeO3 (x = 0, 0.01, 0.03 and 0.05) nanoparticles are synthesized by the sol-gel method. A single phase perovskite rhombohedral structure of all the samples is established from the Rietveld refined XRD patterns. The substitution of Tb^3+ ions to Bi^3+ decreases the particle size and enhances the ferromagnetic properties of this system. Interestingly a large maximum magnetization value of 1.73emu/g at 50kOe can be observed in 1% Tb-doped sample at 300 K. The decrease in band gap may result from the reduced particle size, while the leakage current density also decreases, which is mainly explained by the variation of oxygen vacancies. Bi1-xTbxFeO3 (x = 0, 0.01, 0.03 and 0.05) nanoparticles are synthesized by the sol-gel method. A single phase perovskite rhombohedral structure of all the samples is established from the Rietveld refined XRD patterns. The substitution of Tb^3+ ions to Bi^3+ decreases the particle size and enhances the ferromagnetic properties of this system. Interestingly a large maximum magnetization value of 1.73emu/g at 50kOe can be observed in 1% Tb-doped sample at 300 K. The decrease in band gap may result from the reduced particle size, while the leakage current density also decreases, which is mainly explained by the variation of oxygen vacancies.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第6期122-126,共5页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant Nos 11004148,51074112,and 11104202 the Natural Science Foundation of Guangxi Province under Grant No 2012GXNSFGA060002
  • 相关文献

参考文献23

  • 1Hou L, Zuo K H, Sun Q B, Ren Z M, Zeng Y P and Li X 2013 Appl. Phys. Lett. 102 082901.
  • 2Khomchenko V A, Karpinsky D V, Kholkin A L, Sobolev N A, Kakazei G N, Araujo J P, Troyanchuk I O, Costa B F O and Paixo J A 2010 J. Appl. Phys. 108 074109.
  • 3Nuraje N and Su K 2013 Nanoscale 5 8752.
  • 4Makhdoom A R, Akhtar M J, Rafiq M A, Hassan M M and Makhdoom A R 2012 Ceram. Int. 38 3829.
  • 5Chakrabarti K, Das K, Sarkar B, Ghosh S, De S K, Sinha G and Lahtinen J 2012 Appl. Phys. Lett. 101 042401.
  • 6Lotey G S and Verma N K 2012 J. Nanopart Res. 14 742.
  • 7Hu W W, Chen Y, Yuan H M, Li G H, Qiao Y, Qin Y Y and Feng S H 2011 J. Phys. Chem. C 115 8869.
  • 8Chauhan S, Arora M, Sati P C, Chhoker S, Katyal S C and Kumar M 2013 Ceram. Int. 39 6399.
  • 9Das S R, Choudhary R N P, Bhattacharya P and Katiyara R S 2007 J. Appl. Phys. 101 034104.
  • 10Srivastav S K, Gajbhiye N S and Banerjee A 2013 J. Appl. Phys. 113 203917.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部