期刊文献+

Bismuth Effects on Electronic Levels in GaSb(Bi)/AlGaSb Quantum Wells Probed by Infrared Photoreflectance

Bismuth Effects on Electronic Levels in GaSb(Bi)/AlGaSb Quantum Wells Probed by Infrared Photoreflectance
下载PDF
导出
摘要 GaSb(Bi)/Alo.2Gao.sSb single quantum wells are characterized by a Fourier transform infrared spectrometer- based photoreflectance method at 77K. Spatially direct and indirect transitions between the electronic levels at and above the effective band gap are well resolved. The shifts of the electronic levels with Bi incorporation are identified quantitatively. The results show that the upshift of the valence band edge is clarified to be dominant, while the Bi-induced downshift of the conduction band edge does exist and contributes to the band gap reduction in the GaSbBi quantum-well layer by (29±6)%. GaSb(Bi)/Alo.2Gao.sSb single quantum wells are characterized by a Fourier transform infrared spectrometer- based photoreflectance method at 77K. Spatially direct and indirect transitions between the electronic levels at and above the effective band gap are well resolved. The shifts of the electronic levels with Bi incorporation are identified quantitatively. The results show that the upshift of the valence band edge is clarified to be dominant, while the Bi-induced downshift of the conduction band edge does exist and contributes to the band gap reduction in the GaSbBi quantum-well layer by (29±6)%.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第6期127-130,共4页 中国物理快报(英文版)
基金 Supported by the National Basic Research Program of China under Grant No 2014CB643901 the National Natural Science Foundation of China under Grant Nos 11274329 and 61321492 the Key Research Program of the Chinese Academy of Sciences under Grant Nos XDA5-1 and KGZD-EW-804
  • 相关文献

参考文献17

  • 1Francoeur S, Seong M, Mascarenhas A, Tixier S, Adamcyk M and Tiedje T 2003 Appl. Phys. Lett. 82 3874.
  • 2Pettinari G, Polimeni A, Dlokland J, Trotta R, Christianen P C M, Capizzi M, Maan J C, Lu X, Young E C and Tiedje T 2010 Phys. Rev. B 81 235211.
  • 3Rajpalke M K, Linhart W M, Birkett M, Yu K M, Scanlon D O, Buckeridge J, Jones T S, Ashwin M J and Veal T D 2013 Appl. Phys. Lett. 103 142106.
  • 4Song Y, Wang S, 8aha Roy I, Shi P and Hallen A 2012 J. Vac. Sci. Technol. B 30 02Bl14.
  • 5Chen X, Song Y, Zhu L, Wang S, Lu W, Guo S and Shao J 2013 J. Appl. Phys. 113 153505.
  • 6Alberi K, Wu J, Walukiewicz W, Yu K M, Dubon O D, Watkins S P, Wang C X, Liu X, Cho Y J and Furdyna J 2007 Phys. Rev. B 75 045203.
  • 7Usman M, Broderick C A, Lindsay A and O'Reilly E P 2011 Phys. Rev. B 84 245202.
  • 8Batool Z, Hild K, Hosea T J C, Lu X, Tiedje T and Sweeney S J 2012 J. Appl. Phys. 111 113108.
  • 9Shao J, Lu W, Yue F, Lii X, Huang W, Li Z, Guo S and Chu J 2007 Rev. Sci. Instrum. 78 013111.
  • 10Ma L, Shao J, Lii X, Guo S and Lu W 2011 Chin. Phys. Lett. 2B 047801.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部