期刊文献+

基于多工况混合模型的故障监控方法研究 被引量:1

Process Monitoring Research Based on Multimode Mixture Model
下载PDF
导出
摘要 针对多工况过程建立了一个多工况高斯混合模型(Gaussian Mixture Model,GMM),并利用EM(Expectation Maximization)算法对该GMM参数进行估计。通过引入贝叶斯阴阳算法(Bayesian YingYang,BYY),实现了GMM中混合工况数目的自动估计。然后,通过在所建GMM的每个分量中构建PCA模型,建立一个多工况故障监控混合模型。最后利用TE过程研究证明了所建模型在过程监控中的有效性。 A muhimode Gaussian Mixture Model (GMM) was established and estimated with Expectation Maximization (EM) algorithm, including the mixture mode number associated with the EM algorithm through introducing Bayesian Ying-Yang (BYY) algorithm. By constructing Principal Component Analysis (PCA) mo- nitoring model in GMM's each component, a multimode fault monitoring mixture model was established. The Tennessee Eastman (TE) benchmark proves effectiveness of the proposed model in process monitoring.
出处 《化工自动化及仪表》 CAS 2015年第3期263-266,319,共5页 Control and Instruments in Chemical Industry
基金 国家自然科学基金项目(61304136)
关键词 过程监控 故障诊断 多工况混合模型 PCA process monitoring, fault diagnosis, muhimode model, PCA
  • 相关文献

参考文献10

  • 1Chiang L H,Ressell E L,Braatz R D. Fault Detection and Diagnosis in Industrial System [ M ]. London: Springer-Verlag ,2001 : 195 - 205.
  • 2Choi S W, Martin E B, Morris A .I. Fault DetectionBased on a Maximum-Likelihood Principal Component Analysis ( PCA ) Mixture [ J ]. Industrial and Engineer- ing Chemistry Research ,2005,44:2316 - 2327.
  • 3Hwang D H, Hart C H. Real-time Monitoring for a Process with Multiple Operating Modes [ J ]. Control Engineering Practice, 1999,7 ( 7 ) : 891 - 902.
  • 4Lane S, Martin E B, Kooijmans R, et al. Performance Monitoring of a Multi-product Semi-batch Process [ J ]. Journal of Process Control,2001 , 11 ( 1 ) : 1 - 11.
  • 5Zhao S J,Zhang J,Xu Y M. Monitoring of Processes with Multiple Operating Modes Through Multiple Principal Component Analysis Models[ J ]. Industrial and Engineer- ing Chemistry Research,2004,43(2) :7025 -7035.
  • 6Zhao S J,Zhang J,Xu Y M. Performance Monitoring of Processes with Multiple Operating Modes through Mul- tiple PLS Models[ J]. Journal of Process Control ,2006, 16(7) :763 -772.
  • 7Ma J,Wang T,Xu L. A Gradient BYY Harmony Learn- ing Rule on Gaussian Mixture with Automated Model Selection [ J ]. Neurocomputin, 2004,56 : 481 - 487.
  • 8Dempster A P,Laird N M ,Rubin D B. Maximum-likeli- hood from Incomplete Data via the EM Algorithm [ J ]. Journal of the Royal Statistical Society, Series B ( Methodological), 1977,39 ( 1 ) : 1- 38.
  • 9Downs J J, Vogel E F. A Plant-wide Industrial ProcessControl Problem[ J ]. Computers Chemisty Engineering, 1993,17(3) :245-255.
  • 10Lawrence R N. Decentralized Control of the Tennessee Eastman Challenge Process [ J ]. Journal of Process Control, 1996,6 (4) :205 221.

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部