期刊文献+

一种基于可预测元分析的故障诊断方法 被引量:2

A Fault Diagnosis Method Based on Forecastable Component Analysis
下载PDF
导出
摘要 将可预测元分析(Fore CA)引入到过程监控中,通过选取合适的可预测元并构造能够反映系统运行状况的统计量对在线数据进行统计监控,克服了主元分析(PCA)方法假设数据服从高斯分布且无法反映系统动态时序特性的缺陷,能很好地描述工业过程的动态特性并进行故障检测。TE模型上的仿真结果证明了Fore CA在工业过程监控中的可行性与有效性。 The forecastable component analysis (ForeCA) was introduced into the industrial process monito- ring. Through selecting proper ForeCA and constructing the statistics which reflecting system' s operation state, the on-line data can be monitored to overcome drawbacks that principal component analysis (PCA) as- sumes the data to be in Gaussian distribution and incapable of displaying the system' s dynamic timing charac- teristics. It can better reflect the dynamic nature of industrial process and can be used for fault detection. Sim- ulation in Tennessee Eastman (TE) model proves ForeCA' s feasibility and effectiveness in the industrial process monitoring.
出处 《化工自动化及仪表》 CAS 2015年第3期272-276,共5页 Control and Instruments in Chemical Industry
基金 国家自然科学基金资助项目(61273161)
关键词 故障诊断 可预测元分析 TE过程 主元分析 fault diagnosis, forecastable component analysis, TE process, principal component analysis
  • 相关文献

参考文献14

  • 1李晗,萧德云.基于数据驱动的故障诊断方法综述[J].控制与决策,2011,26(1):1-9. 被引量:262
  • 2Kimura D, Nii M, Yamaguchi T, et al. Fuzzy Nonlinear Regression Analysis Using Fuzzified Neural Networks for Fault Diagnosis of Chemical Plants [ J]. JACIII, 2011, 15(3): 336-344.
  • 3Kano M, Nakagawa Y. Data-based Process Monito- ring, Process Control, and Quality Improvement: Re- cent Developments and Applications in Steel Industry [ J]. Computers & Chemical Engineering, 2008, 32 (1): 12-24.
  • 4陈玉东,施颂椒,翁正新.动态系统的故障诊断方法综述[J].化工自动化及仪表,2001,28(3):1-14. 被引量:60
  • 5Zhang Y, Zhang Y. Fault Detection of Non-Gaussian Processes Based on Modified Independent Component Analysis [ J ]. Chemical Engineering Science, 2010, 65(16) : 4630 -4639.
  • 6Wise B M, RickerN L, Veltkamp D F, et al. AThe- oretical Basis for the Use of Principal Component Mod- els for Monitoring Multivariate Processes [ J ]. Process Control and Quality, 1990,1 ( 1 ) : 41 - 51.
  • 7Lee J M, Yoo C K, Choi S W, et al. Nonlinear Process Monitoring Using Kernel Principal Component Analysis [ J]. Chemical Engineering Science, 2004, 59 (1): 223-234.
  • 8Goerg G. Forecastable Component Analysis [ C ]. Pro- ceedings of the 30th International Conference on Ma- chine Learning. Atlanta, GA, USA : ICML, 2013 : 64 - 72.
  • 9Nuttall A H, Carter G C. Spectral Estimation Using Combined Time and Lag Weighting[ J]. Proceedings of the IEEE,1982, 70(9) : 1115 - 1125.
  • 10Dempster A P, Laird N M, Rubin D B. Maximum Likelihood from Incomplete Data via the EM Algo- rithm [ J ]. Journal of the Royal Statistical Society, 1977, 39(1) : 1 -38.

二级参考文献70

共引文献318

同被引文献10

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部