期刊文献+

多样性分布参数的粒子群算法及其在过程动态优化中的应用

Particle Swarm Optimization for Diversity Distribution Parameters and Its Application in Dynamic Optimization Process
下载PDF
导出
摘要 提出一种多样性分布参数的粒子群算法(DDPPSO)。在DDPPSO算法中,每个粒子在初始化时拥有各自的惯性权重和加速因子。在迭代时由每个粒子的寻优性能决定其参数的权重,进而计算参数群体的加权平均值。根据加权平均值与自适应方差,通过正态分布产生下一代参数个体,从而实现参数群体的多样性分布,为算法的寻优提供实时最佳的控制参数。标准测试函数实验表明,在寻优性能上DDPPSO算法较新改进的PSO算法有较大提高。最后,将DDPPSO算法应用于Park-Ramirez生物反应器的动态优化,获得满意的结果。 The particle swarm optimization for diversity distribution parameters (DDPPSO) was proposed. In DDPPSO, each particle has its own inertia weight and acceleration factor during initialization. According to the optimization performance of each particle, the weight value of its parameters can be determined to calculate the weighted average values of parameters. Basing on weighted average values and adaptive variance and the nor- mal distribution which generating the parameter of next generation, the diversity distribution of parameters can be achieved to provide real-time and optimal control parameters for the algorithm optimization. Experiment on normative test function shows that the DDPPSO outperforms other improved PSO algorithms in performance. Applying DDPPSO to dynamic optimization of Park-Ramirez bioreactor can bring about satisfactory results.
出处 《化工自动化及仪表》 CAS 2015年第3期277-281,共5页 Control and Instruments in Chemical Industry
基金 国家"973"计划项目(2013CB733605) 国家自然科学基金项目(21176073)
关键词 粒子群算法 多样性分布 动态优化 生物反应器 particle swarm optimization, diversity distribution, dynamic optimization, biological reactor
  • 相关文献

参考文献15

  • 1Kennedy J, Eberhart R. Particle Swarm Optimization [ C]. IEEE International Conference on Neural Net- works, IV. Piscataway, NJ : IEEE, 1995 : 1942 - 1948.
  • 2应明峰,鞠全勇,高峰.基于粒子群优化的PID控制器设计与应用[J].计算机仿真,2011,28(11):283-287. 被引量:29
  • 3黄宇,韩璞,刘长良,李永玲.改进量子粒子群算法及其在系统辨识中的应用[J].中国电机工程学报,2011,31(20):114-120. 被引量:42
  • 4严巳杰,胡建华,黄炳琼,奚云.基于粒子群优化算法的板翅式换热器优化设计[J].化工机械,2012,39(1):55-57. 被引量:10
  • 5Liu C X, Ouyang C J. An Adaptive Fuzzy Weight PSO Algorithm [ C ]. International Conference on Genetic and Evolutionary Computing. Shenzhen : ICGEC, 2010 : 8 - 10.
  • 6Bao G Q, Mao K F. Particle Swarm Optimization Algo- rithm with Asymmetric Time Varying Acceleration Co- efficients[ C ]. International Conference on Robotics and Biomimetics. Gulin : ROBIO ,2009:2134 - 2139.
  • 7. Li G, Xu C. A Novel Particle Swarm Optimization Based on the Self-Adaptation Strategy of Acceleration Coefficients[ C ]. International Conference on Compu- tational Intelligence and Security. Beijing: Computa- tional Intelligence and Security,2009:277 - 281.
  • 8Wang H, Sun H, Li C G, et al. Diversity Enhanced Par- ticle Swarm Optimization with Neighborhood Search [ J]. Information Sciences ,223 : 119 - 135.
  • 9Liang J J, Qin A K, Suganthan P N. Comprehensive Learning Particle Swarm Optimizer for Global Optimi- zation of Multimodal Functions [ J ]. IEEE Transac- tions on Evolutionary Computation, 2006,10 ( 3 ) : 281 - 295.
  • 10Zhan Z H, Zhang J, Li Y, et al. Adaptive Particle Swarm Optimization [ J ]. IEEE Transactions on Man and Cybernetics,2009,39 (6) : 1362 - 1381.

二级参考文献55

共引文献112

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部