期刊文献+

基于时间序列位图的滚动轴承异常检测

Study on rolling bearings anomaly detection based on time series bitmaps
下载PDF
导出
摘要 针对机械故障快速实时异常检测问题,提出一种基于时间序列位图的新方法。对时域振动信号运用静态等区间符号化方法进行"粗粒化"处理,得到时域信号的符号矩阵,对时域波形的采样点和小波段分别进行特征统计,并用单层和双层时间序列位图对滚动轴承正常状态和异常状态进行显示。针对实验数据得到的检测结果验证了该方法的准确性和有效性。该方法克服了公式法异常检测中计算过程复杂和检测结果抽象的不足,用可视化位图的方式实现了机械运行状态的直观快速显示,降低了对现场异常检测和故障诊断操作人员的要求,是对现场机械实时在线异常检测方法的有力补充。 Aiming at achieving fast and real-time online anomaly detection on mechanical failure, a kind of new anomaly detection method based on time series bitmap technology is proposed. Static equal interval symbolic method is carried on to obtain the coarse graining processing of the vibration signal in time domain. Then characteristic statistical analysis is taken on sampling points and short vibration waveform. Normal condition and abnormal condition of the rolling bearing are showed by one-level and two-level time series bitmaps. The simulations and detection result based on the laboratory data prove this method accurate and effective. Our method overcomes traditional detect methods' defects such as complex algorithms or abstract result. The condition of mechanical system could be showed intuitive and simple. Thus judgment could be easily made for the operator or they didn' t need so much professional knowledge. This method was an effective supplement to traditional anomaly detection methods.
出处 《制造技术与机床》 北大核心 2015年第2期25-29,共5页 Manufacturing Technology & Machine Tool
关键词 机械系统 异常检测 时间序列分析 符号化 位图 mechanical system anomaly detection time series analysis symbolization bitmap
  • 相关文献

参考文献5

二级参考文献27

  • 1[1]D.Djurdjanovic,J.Lee,J.Ni.Watchdog Agent-an Infortronics-based prognostics approach for product performance degradation assessment and prediction[J].Advanced Engineering Informatics,2003,17:109-125.
  • 2[2]Javitz,H.S.,Valdes,A..The SRI IDES Statistical Anomaly Detector.In Proceedings of the IEEE Symposium on Research in Security and Privacy,316-326.
  • 3M Markou,S Singh.Novelty detection:a review-part 1:statistical approaches[J].Signal Process,2003,83(12):2481-2497.
  • 4M Markou,S Singh.Novelty detection:a review part 2:neural network based approaches[J].Signal Process,2003,83(12):2499~2521.
  • 5D Dasgupta,S Forrest.Novelty detection in time seriesdata using ideas from immunology[C].In:Proceedings of the 5th International Conference on Intelligent Systems,Reno,June 19-21,1996.
  • 6T Stibor,P Mohr,J Timmis.Is negative selection appropriate for anomaly detection?[C].In:Proceedings of the ACM SIGEVO Genetic and Evolutionary Computation Conference (GECCO-2005),Washington,D.C.,June 25-29,2005:321-328.ACM Press.
  • 7M Basseville,I Nikiforov.Detection of Abrupt Changes:Theory and Application[M].Prentice-hall,1993:1-22.
  • 8E Keogh,S Lonardi,W Chiu.Finding surprising patterns in a time series database in linear time and space[C].In:the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,Edmonton,Alberta,Canada,July 23-26,2002:550-556.
  • 9J Crutchfield.The calculi of emergence:computation,dynamics and induction[D].Physica D,1994,75:11-54.
  • 10L Cohen.时频分析:理论与应用[M].白居宪,译.西安:西安交通科技大学出版社,1998:1-2.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部