期刊文献+

基于IAGA-LSSVM的切削加工表面粗糙度的智能预测 被引量:3

Intelligent prediction for surface roughness of cutting based on IAGA-LSSVM
下载PDF
导出
摘要 提出了一种基于改进自适应遗传算法与最小二乘支持向量机(IAGA-LSSVM)的切削加工表面粗糙度的智能预测方法。通过设定LS-SVM模型主要参数的取值范围,采用IAGA进行寻优,提高了LS-SVM预测模型的精度。最后采用平均相对预测误差作为检验指标,比较了多元线性回归模型、BP神经网络模型、AGA-LSSVM模型及IAGA-LSSVM模型对表面粗糙度的预测能力。结果表明:IAGA-LSSVM预测模型的建模时间更短,平均相对预测误差更小,对切削加工表面粗糙度的预测具有一定的参考意义。 A new prediction method for surface roughness of milling based on an Improved Adaptive Genetic Algorithm (IAGA) and Least Squares Support Vector Machine (LS-SVM) is put forward. By setting the range of the main parameters of the LS-SVM model, the accuracy of the LS-SVM forecasting model is improved by using IAGA optimizing the parameters. Finally, the prediction accuracy for surface roughness of the multiple linear regression model, BP neural network model, AGA-LSSVM model and IAGA -LSSVM model is compared. The practical experimental results show that the modeling time of IAGALSSVM prediction model is shorter, while the average relative prediction error is smaller, that has a certain guiding significance for the prediction of surface roughness in milling.
出处 《制造技术与机床》 北大核心 2015年第2期97-101,共5页 Manufacturing Technology & Machine Tool
基金 中航产学研创新基金项目(CXY2010SH29)
关键词 自适应遗传算法 支持向量机 切削加工 粗糙度 智能预测 adaptive genetic algorithm support vector machine cutting roughness intelligent prediction
  • 相关文献

参考文献13

  • 1Nikos C T. Predictive modeling of the Ti6AIA valloy surface roughness [J]. J Intell Robot Syst,2010,60:513-530.
  • 2Oktem H.An integrated study of surface rough-nessfor modeling and op- timization of cutting par-ameters during end milling operation[ J]. Int J Adv Manuf Technol, 2009,43 : 852- 861.
  • 3Bozdemirm, Aykuts. Optimization of surfa - ceroughness in end milling castamide[ J]. Int J Adv Manuf Technol,2012, 62:495-503.
  • 4Mohammad R R,Reza F Z,Mahdiar H.Op-timum surface roughness pre- diction in face milling by using neural network and harmony search algo- rithm[J]. Int J Adv Manuf Tech nol,2011,52:487-495.
  • 5Metaxiontis K, Kaciannas A, Askounisa, et al. Artificial intelligence in short term electrieload forecasting: a state-of-the-art survey for the re- search[ J] .Energy Conversion and Management,2003(44) :1525-1534.
  • 6Kadirgamak, Noor M M, Rahman M M. Optimization of surface roughness in end milling using potential support vector machine [ J ]. Arab J Sci Eng, 2012,37 : 2269-2275.
  • 7Ulase, Sami E. Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel[ J] .J In- tell Manuf,2012,23:639-650.
  • 8张弦,王宏力.基于粒子群优化的最小二乘支持向量机在时间序列预测中的应用[J].中国机械工程,2011,22(21):2572-2576. 被引量:14
  • 9Salgado D R, Alonso F J, Cambero I, et al. In- process surface roughness prediction system using cutting vibrations in turning [ J ]. Int J Adv Manuf Technol, 2009,43 : 40- 51.
  • 10鲁峰,黄金泉.基于遗传算法的航空发动机机载模型支持向量机修正方法[J].航空动力学报,2009,24(4):880-885. 被引量:11

二级参考文献48

共引文献146

同被引文献48

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部