期刊文献+

橡胶阻尼材料分数微分模型研究

Study on rubber damping materials fractional derivative model
下载PDF
导出
摘要 推导了橡胶阻尼材料的Zener四参数分数微分模型以及五参数分数微分模型,并分析了微分阶数对于各模型的影响。通过动态力学热分析实验,拟合出两种分数微分模型的参数值,并与实验值进行对比分析,发现五参数分数微分模型能够较好地描述耗能模量关于频率对数非对称的橡胶阻尼材料的频率特性,而Zener四参数分数微分模型则仅仅适用于耗能模量关于频率对数光滑对称的橡胶阻尼材料。 This paper deduced the Zener four-parameter fractional derivative model and the five-parameter fractional derivative model, and the analysis of the effect of the derivative number on these two models had been made. By the DMTA test, the parameters of both two models were easy to fit, and the comparison showed that the five-parameter fractional derivative model could describe the rubber damping materials with asymmetric peak of loss modulus, while the Zener four-parameter fractional derivative model could only describe the rubber damping materials with symmetric peak of loss modulus.
出处 《机械》 2015年第6期1-5,共5页 Machinery
基金 973计划(2011CB711100) 自然科学基金重点项目(61134002) 教育部创新团队资助项目(IRT1178)
关键词 橡胶阻尼材料 分数微分 频率谱 非对称 rubber damping materials fractionalderivative frequency spectrum asymmetry
  • 相关文献

参考文献6

  • 1朱克勤,杨迪,胡开鑫.粘弹性流体的分数元模型及圆管起动流[J].力学季刊,2007,28(4):521-527. 被引量:6
  • 2BAGLEY R L, TORVIK P J. On the fractional calculusmodel of viscoelastic behavior[J]. Journal of Rheology, 1986,30( 1 ) : 133-155.
  • 3C. Friedrich. Relaxation and retardation functions of the Maxwell model with fractionalderivatives. Rheologica Acta, 1991, 30 ( 2 ) : 151-158.
  • 4N. Heymans, J. C. Bauwens. Fractal rheological models and fractional differential equations for viscoelastic behavior[J]. RheologicaActa, 1994, 33 ( 3 ) : 210-219.
  • 5D1NZART F , LIPINSKI P. Improved five-parameter fractional derivative model for elastomers[J]. Arch. Mech, 2009, 61 ( 6 ) : 459-475.
  • 6PRITZ T. Five-parameter fractional derivative model forpolymeric damping materials[J]. Joumal of Sound andVibration, 2003, 265 (5) : 935-952.

二级参考文献11

  • 1Blair G W S. The role of Psychophysics in rheology[J]. Journal of Colloid Science, 1947,2:21 - 32.
  • 2Blair G W S. Psychoreology.-link between the past and the present[J]. Journal of Texture Studies, 1974,5:3- 12.
  • 3Gerasimov A N. A generalization of linear laws of deformation and its application to inner friction problems[J]. Prikl Mat Mekh,1948, 12:251 - 259.
  • 4Podlubny I. Fractional Differential Equations[M]. Academic Press, 1999,271 - 273.
  • 5Ross B. Fractional Calculus: a historical apologia for the development of a calculus using differentiation and antidifferentiation of non-integral orders[J]. Mathematics Magazine, 1977, 50(3):115- 122.
  • 6Yin Y B, Zhu K Q. Oscillating flow of a viscoelastic fluid in a pipe with the fractional Maxwell model[J]. Applied Mathematics and Com- putation, 2006,173(1) : 231 - 242.
  • 7Jordan P M, Puri A, Boros G. On a new exact solution to Stokes'first problem for Maxwell fluids[J]. International Journal of Non-Linear Mechanics, 2004,39 : 1371 - 1377.
  • 8Schiessel H, Blumen A. Hierarchical analogues to fractional relaxation equations[J]. J Php A Math Gen, 1993, 26:5057-5069.
  • 9Heymans N, Bauwens J C. Fractal rheological models and fractional differential equations for viscoelastic behav[or[J]. Rheologica Acta, 1994, 33;210- 219.
  • 10Courant R,Hilbert D.数学物理方法(卷Ⅱ)[M].北京:科学出版社,1981(第五章附录二“瞬态问题和Heaviside运算微积”).

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部