摘要
本文研究Abel积分Γh(a0+a1x+a2x2+a3x3)ydx零点个数上确界,其中Γh是超椭圆Hamilton量H(x,y)=1/2y2+9/2x2+5x3+7/4x4+1/5x5的闭代数曲线族.根据Abel积分生成元的Chebyshev理论和Abel积分的渐进展开式,结合多项式符号计算技术证明3是Abel积分零点个数的一个上界,并且可以达到3个零点.
In this paper, we study the number of zeros of the Abelian integral Γh(a0+a1x+a2x2+a3x3)ydx defined on the compact level curves Fh of the quintic hyper-elliptic Hamiltonian:H(x,y)=1/2y^2+9/2x^2+5x^3+7/4x^4+1/5x^5.It is proved that 3 is an upper bound of the number of zeros of the above Abelian integral and 3 zeros can be reached. The proof relies on a Chebyshev criterion (Grau et al. (2011)), some techniques in mathematical mechanization and the asymptotic expansions of Abelian integral.
出处
《中国科学:数学》
CSCD
北大核心
2015年第6期751-764,共14页
Scientia Sinica:Mathematica
基金
国家自然科学基金(批准号:11301105)资助项目