期刊文献+

基于传染病模型的社交网络舆情话题传播 被引量:18

Public opinion topics propagation in social network based on infectious disease model
下载PDF
导出
摘要 针对传统模型难以真实地描述社交网络舆情话题传播过程,提出一种基于传染病模型的社交网络舆情话题传播模型。分析了社交网络舆情话题的传播特点,根据传染病动力学机制,将内部感染概率、外部感染概率、免疫概率以及直接免疫概率引入舆情话题传播过程中,构建了社交网络舆情话题传播模型,在Matlab 2012平台下采用Facebook数据集进行仿真测试。仿真实验结果表明,该模型可以准确描述社交网络中的话题传播行为特征,研究结果可以为社交网络舆论管理者提供有价值的参考意见。 The traditional model can not accurately describe diffusion process of public opinion topic in social network. This paper puts forward a propagation model of public opinion topics in social network based on infectious disease. The propagation characteristics of the social network public opinion topic are analyzed, and then according to the infectious disease diffusion mechanism, the internal infection probability, probability of external infection, immune probability and direct immune probability are introduced into public opinion topic diffusion process and it establishes the propagation model of public opinion topic in social network. The simulation test is carried out on the platform of Matlab 2012 using facebook data set. The simulation experiment results show that the proposed model can accurately describe the propaga-tion behavior characteristics of public opinion topics in social network. Research results can provide valuable reference for social network public opinion management.
作者 谭娟
出处 《计算机工程与应用》 CSCD 北大核心 2015年第12期118-122,共5页 Computer Engineering and Applications
基金 北京市自然科学青年基金(No.9144022) 国家社科基金重点项目(No.13AGJ008) 教育部人文社科基金青年项目(No.12YJC630183)
关键词 社交网络 舆情话题 传播模型 传染病动力学 social network public opinion topics propagation model infectious disease dynamics
  • 相关文献

参考文献13

  • 1霍峥,孟小峰,黄毅.PrivateCheckIn:一种移动社交网络中的轨迹隐私保护方法[J].计算机学报,2013,36(4):716-726. 被引量:69
  • 2李阳,王晓岩,王昆,沙瀛.基于社交网络的安全关系研究[J].计算机研究与发展,2012,49(S2):124-130. 被引量:10
  • 3Mo M, Wang D.Exploit of online social networks with semi-supervised learning[C]//Proceedings of IEEE World Congress on Computational Intelligence,2010.18-23.
  • 4He J, Chu W, Liu Z.Inferring privacy information from social networks[C]//Lecture Notes in Computer Science, 2006,3975 : 154-168.
  • 5Lindamood J,Heatherly R, Kantarcioglu M, et al.Inferring private information using social network data[C]//Proceed- ings of International Conference on World Wide Web, 2009: 123-130.
  • 6马知恩,周义仓,王稳地,等.传染病动力学的数学建模与研究[M].北京:科学出版社,2006.
  • 7熊熙,胡勇.基于社交网络的观点传播动力学研究[J].物理学报,2012,61(15):104-110. 被引量:43
  • 8Palla G, Farkas I.Directed network modules[J].New Journal of Physics, 2007,9(3) : 186-192.
  • 9Newman J.Fast algorithm for detecting community struc- ture in networks[J].Physical Review E,2004,69(6): 133-138.
  • 10Clauset A,Newman J, Moore C.Finding community struc- ture in very large networks[J].Physical Review E,2004, 70(6).

二级参考文献76

  • 1杨楠,弓丹志,李忺,孟小峰.Web社区发现技术综述[J].计算机研究与发展,2005,42(3):439-447. 被引量:35
  • 2唐常杰,刘威,温粉莲,乔少杰.社会网络分析和社团信息挖掘的三项探索——挖掘虚拟社团的结构、核心和通信行为[J].计算机应用,2006,26(9):2020-2023. 被引量:24
  • 3Getoor L, Diehl C P. Link mining: A survey [J]. SIGKDD Explorations, 2005, 7(2): 3-12.
  • 4Girvan M, Newman M E J. Community structure in social and biological networks [J]. Proc of the National Academy of Sciences, 2002, 99(12): 7821-7826.
  • 5Han Jiawei. Data Mining= Concepts and Techniques [M]. Kamber M. 2nd ed. Beijing: China Machine Press, 2006.
  • 6Newman M E J. Detecting community structure in networks [J]. The European Physical Journal B Condensed Matter and Complex Systems, 2004, 38(2): 321-3:30.
  • 7Newman M E J. Fast algorithm for detecting community structure in networks[J]. Physical ReviewE, 2004, 69(6): 066133.
  • 8Brandes U. faster algorithm for betweenness centrality [J]. Journal of Mathematical Sociology, 2001, 25:163-177.
  • 9Clauset A, Newman M E J, Moore C. Finding community structure in very large networks [J]. Physical Review E, 2004, 70(6): 066111.
  • 10Blondel V D, Guillaume J, Lambiotte R, et al. Fast unfolding of communities in large networks [J].Journal of Statistical Mechanics: Theory and Experiment, 2008 (10) : 1742-5468.

共引文献169

同被引文献164

引证文献18

二级引证文献173

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部