期刊文献+

基于CUDA的图像匹配算法 被引量:3

Image matching algorithm based on CUDA
下载PDF
导出
摘要 为解决目前已有的图像匹配算法不适用于对实时性要求很强的应用,提出了PLS(Partial Least Squares)与余弦定理相结合的并行化图像匹配算法。该算法在CUDA架构下,对图像矩阵分块,分块后每个小块图像存入共享存储器处理并提取每个小块图像特征,通过合并后图像特征采用余弦定理计算图像的相似度,从而找出匹配图像。实验表明,CUDA架构下可以实现图像的并行匹配,与CPU上串行匹配相比,时效性提高了百倍以上。 In order to solve the current image matching algorithm which does not apply to the application of strong real-time requirements, a parallel image matching algorithm PLS(Partial Least Squares)in combination with the law of cosines is proposed. In the CUDA architecture, the algorithm puts the image matrix into blocks. Each small image block is stored in the shared memory and the image features of each piece are extracted, and then the image features which are combined use the law of cosines to calculate similarity, and the matching image is found. The experiments show that the algorithm can achieve the parallel image matching in the CUDA architecture, compared to the CPU serial image matching. The time-liness of the proposed algorithm is hundreds of times compared to the CPU serial algorithm.
出处 《计算机工程与应用》 CSCD 北大核心 2015年第12期165-170,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.60970012) 教育部博士学科点专项科研博导基金(No.20113120110008) 上海教委创新基金重点项目(No.13ZZ112) 上海信息技术领域重点科技攻关计划基金资助项目(No.09511501000 No.09220502800) 上海市教育科学研究项目(No.B11042) 上海市一流学科项目资助(No.XTKX2012)
关键词 统一设备计算架构(CUDA) GPU技术 偏最小二乘(PLS)方法 并行计算 余弦定理 图像匹配 Compute Unified Device Architecture (CUDA) GPU technology Partial Least Squares (PLS) method parallel computing law of cosines image matching
  • 相关文献

参考文献1

二级参考文献12

  • 1DUFOURNAUD Y, SCHMID C, HORAUD R. Matching images with different resolutions[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. South Carolina, USA: IEEE, 2000: 612-618.
  • 2LING Hai-bin, JACOBS D W. Deformation Invariant Image Matching[C]//The tenth IEEE International Conference on Computer Vision. Beijing: IEEE, 2005, 2: 1466-1473.
  • 3NVIDIA Corporation. NVIDIA CUDA programming guide 2.0[EB/OL]. [2010-01-05]. http://developer, download. nvidia.com/compute/cuda/2_0/docs/NV1DIA_CUDA_Progr amming_Guide 2.0.pdf.
  • 4DONG Kai-kun, CHI Le-jun, GUO Li. Parallel image matching based on local entropy difference vector[C]//The llth Joint Conference on Information Science. Beijing: Atlantis Press, 2008: 1-4.
  • 5Qin Xu-wen, LI Li, TIAN Shu-fang. A new image matching algorithm with modified greedy algorithm for remote sensing imagery[C]//ISPRS Workshop on Service and Application of Spatial Data Infrastructure, XXXVI(4/W6). [S.1.]: [s.n.], 2005: 113-120.
  • 6TH1RION J P. Image matching as a diffusion process: an analogy with Maxwell's demons[J]. Medical Image Analysis, 1998, 2(3): 243-260.
  • 7KHOKHAR A, LIN Wei-ming. Stereo and image matching on fixed size linear arrays[C]//Parallel Processing Symposium. [S.1.]: [s.n.], 1998: 449-453.
  • 8GRAUMAN K, DARRELL T. Efficient image matching with distributions of local invariant features[C]//The IEEE Conference on Computer Vision and Pattern Recognition. San Diego: IEEE, 2005: 627-634.
  • 9CHARIOT A, KERIVEN R. GPU-boosted online image matching[C]//The 19th International Conference on Pattern Recognition. Florida: IEEE, 2008: 1-4.
  • 10LIN Daw-tung. Autonomous sub-image matching for two-dimensional electrophoresis gels using MaxRST algorithm[J]. Image and Vision Computing, 2010, 28(8): 1267-1279.

共引文献14

同被引文献23

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部