期刊文献+

改进的多尺度图谱和局部谱的目标提取算法

Object extraction algorithm based on improved multi-scale spectral and local spectral
下载PDF
导出
摘要 当目标对象与背景的纹理较多或两者纹理较接近时,基于多尺度图谱和局部谱的目标提取算法不能很好地提取目标,主要由于在计算相似度度量时,金字塔多尺度图谱算法特征选取较简单。针对算法不足,提出基于改进的金字塔多尺度图谱和局部谱相结合的目标提取算法,主要通过改进多尺度图谱中干涉轮廓权重构造方法,原算法中是基于拉普拉斯边缘图和梯度图,改进后是基于多尺度边缘概率检测算子和方向分水岭算法产生的边缘强度图。多尺度边缘概率检测算子可以有效地解决纹理较复杂图像分割不佳问题,方向分水岭算法可以有效解决由于目标和背景部分边界信息较接近导致的分割不佳问题。实验结果表明改进算法有效地弥补了原算法的不足,并且具有良好的目标提取效果。 When textures of object and background are more or their textures are similar, object extraction algorithm based on multi-scale spectral and local spectral can’t be very well, the main reason is that feature selection of pyramid multi-scale spectral algorithm is relatively simple when calculating the similarity measure. Aiming at drawback of this scheme, the new scheme based on improved pyramid multi-scale spectral and local spectral is proposed. The main area of improve-ment is weight construction method based on intervening contours. The original scheme is based on the Laplace edge map and the gradient map, while the improved scheme is based on the edge strength map which is generated by multi-scale probability of a boundary detection operator(mPb operator)and Oriented Watershed Transform algorithm(OWT). The mPb operator can effectively solve the problem that the result of segmentation about complicated texture image is not good. Oriented watershed transform algorithm can effectively solve the poor segmentation problem when part boundary information of target and background are similar. Experimental results demonstrate that the new scheme is superior com-pared to the original scheme in the aspect of object extraction of effect.
出处 《计算机工程与应用》 CSCD 北大核心 2015年第12期176-183,共8页 Computer Engineering and Applications
基金 国家自然科学基金(No.61070233)
关键词 多尺度图谱 局部谱 干涉轮廓 多尺度边缘概率检测算子 谱的边缘概率检测算子 方向分水岭算法 multi-scale spectral local spectral intervening contours multi-scale probability of a boundary detection operator spectral probability of a boundary detection operator oriented watershed transform algorithm
  • 相关文献

参考文献15

  • 1Richard S.Computer vision:algorithms and applications[M]. [S.1.] : Springer, 2010 : 267-305.
  • 2Cour T,Benezit F, Shi J.Spectral segmentation with multi- scale graph decomposition[C]//Proceedings of IEEE Com- puter Society Conference on Computer Vision and Pat- tern Recognition, 2005,2 : 1124-1131.
  • 3Sharon E,Brandt A,Bascri R.Fast multiscale image seg- mentation[C]//Proceedings of IEEE Conference on Com- puter Vision and Pattern Recognition,2000.
  • 4Galun M,Sharon E,Bascri R,et al.Texture segmentation by multiscale aggregation of filter responses and shape elements[C]//Proceedings of the Ninth IEEE International Conference on Computer Vision(ICCV 2003),2003.
  • 5Alpert S, Galun M, Basri R, et al.Image segmentation by probabilistic bottom-up aggregation and cue integration[J]. IEEE Transactions on Pattern Analysis and Machine Intel- ligence, 2012,34 ( 2 ) : 315-327.
  • 6王永国,彭国华,王小龙,唐梦.基于多尺度图谱和局部谱的目标提取算法[J].计算机应用研究,2013,30(5):1577-1581. 被引量:1
  • 7Li Xu, Lu Cewu, Yi Xu, et al.Image smoothing via L0 gradient minimization[J].ACM Transactions on Graph, 2011,30(6).
  • 8Mahoney M W, Ozecchia L,Vishnoi N K.A spectral algo- rithm for improving graph partitions[EB/OL]. (2009-12-03 ) [2013-08-26].http ://arxiv.org/abs/0912.0681 vl.
  • 9Mahoney M W,Ozecchia L,Vishnoi N K.A local spec- tral method for graphs: with applications to improving graph partitions and exploring data graphs locally[EB/OL]. ( 2011 - 10-21 ) [2013-08-26].http ://arxiv.org/abs/0912.0681 v3.
  • 10Martind D,Fowlkes C,Malik J.Learning to detect natu- ral image boundaries using local brightness, color and texture cues[J].IEEE Trans on Pattern Analysis and Machine Intelligence, 2004,26( 5 ) : 530-549.

二级参考文献16

  • 1RlCHARD S. Computer vision: algorithms and appl ications [M]. [S.I.] :Springer,20I0:267-305.
  • 2TOMASI C, MANDUCHI R. Bilateral filtering for gray and color images[C]//Proc of the 6th IEEE International Conference on Computer Vision. Washington DC: IEEE Computer Society ,1998 :839-846.
  • 3RUDIN L I, OSHER S, FATEMI E . Nonlinear total variation based noise removal algorithms [J]. Physica D, 1992 ,60 (3) : 259- 268.
  • 4FARBMAN Z, FATrAL B., LlSCHINSKl D, et al. Edge-preserving decompositions for multi-scale tone and detail manipulation [J] . ACM Trans on Graph ,2008 ,27(3) : Article No.67.
  • 5LI Xu, LU Ce-wu, YI Xu, et al. Image smoothing via L0 gradient mini- mization[ JJ. ACM Trans on Graph,2011,30(6) :Article No. 174.
  • 6SHI J, MALIK J. Normalized cuts and image segmentation[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000,22 (8) :888-905.
  • 7SHARON E, BRANDT A, BASCRI R. Fast mulfiseale image seg- mentation[ C ]//Proe of IEEE Conference on Computer Vision and Pattern Recognition. 2000:70-77.
  • 8GALUN M, SHARON E, BASCRI R, et al. Texture segmentation by multi-scale aggregation of filter responses and shape elements [ C ]// Proe of the 9th IEEE International Conference on Computer Vision. Washington DC : IEEE Computer Society ,2003:716-723.
  • 9ALPERT S, GALUN M, BASRI R, et al. Image segmentation by probabilistie bottom-up aggregation and cue integration [ J]. IEEE Yrans Pattern Analysis and Machine Intelligence 2012,34 (2) : 315- 327.
  • 10COUR T, BENEZIT F, SHI J. Speetral segmentation with multi-scale graph decomposition[ C ]//Proe of IEEE Conference on Computer Vi- sion and Pattern Recognition. 2005 : 1124-1131.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部