期刊文献+

基于复杂网络的微吧话题流行度预测研究 被引量:1

Popularity Prediction of Micro-bar Topic Based on Complex Network
下载PDF
导出
摘要 微吧是微博平台的贴吧,具有良好的话题主题性,为更好地进行话题流行度预测研究,对电影吧作为研究对象,建立复杂网络模型,并设计自适应差分进化算法对网络进行训练。在算法参数的设计中,通过对算法复杂度边界的推导得到最优参数。对比实验表明,较于神经网络该模型结构更加灵活,较于拟合模型该模型能够对话题特性进行更为全面的描述,并且在话题流行度的预测中具有更高的准确度和稳定性。 Micro-bar is similar to post bar on mircoblog platform, which is based on subjects. To study the features of topic, movie bar was chose to be the research object. A model of complex network was established with topic popularity factors abstracted by correlation analysis. Self-adaptive differential evolution algorithm has been applied to train the network. In the design of the algorithm, the main parameters were set through complexity theoretical derivation to reduce complexity. In contrast, this model is more flexible than neural network and is able to describe more topic characteristics than fitting model, but also apply to forecasting the popular topics with higher accuracy and stability.
作者 张睿 李树刚
出处 《科学技术与工程》 北大核心 2015年第17期72-78,共7页 Science Technology and Engineering
基金 国家自然科学基金(71271132)资助
关键词 社交网络 话题流行度 预测 复杂网络 自适应差分进化算法 复杂度理论 social network topic popularity prediction complex network self-adaptive differen-tial evolution algorithm complexity theory
  • 相关文献

参考文献18

  • 1Suh B, Hong L, Pirolli P, et al. Want to be retweeted? large scale analytics on factors impacting retweet in twitter network. Social com- puting (socialcom), 2010 IEEE Second Internationa| Conference on. IEEE, 2010 ; 8 : 177-184.
  • 2Kwak H, Lee C, Park H, et al. What is twitter, a social network or a news media. Proceedings of the 19th international conference on World wide web. ACM, 2010; 4:591--600.
  • 3Cha M, Haddadi H, Benevenuto F, et al. Measuring user influence on twitter: the million follower fallacy. ICWSM, 2010; 10 (10- 17) : 30.
  • 4Wang X F, Li X, Chen G R. Complex network theory and its appli- cation. Beijing: Tsinghua University Press, 2006.
  • 5Albert R, Barab6si A L. Statistical mechanics of complex networks. Reviews of Modem Physics, 2002 ; 74 ( 1 ) : 47.
  • 6Newman M E J. The structure and function of complex networks. SI- AM Review, 2003 ; 45(2) : 167-256.
  • 7Storn R, Price K. Differential evolution-a simple and efficient adap- tive scheme for global optimization over continuous spaces. Berkeley: ICSI, 1995.
  • 8Qin A K, Huang V L, Suganthan P N. Differential evolution algo- rithm with strategy adaptation for global numerical optimization. Evo- lutionary Computation, IEEE Transactions on, 2009 ; 13 (2) : 398- 417.
  • 9Brest J, Boakovic B, Greiner S, et al. Performance comparison of self-adaptive and adaptive differential evolution algorithms. Soft Com- puting, 2007; 11 (7): 617--629.
  • 10Storn R. On the usage of differential evolution for function optimiza- tion. Fuzzy Information Processing Society, 1996. NAFIPS. , 1996.

同被引文献18

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部