期刊文献+

基于集成熵KPCA的复杂机电系统状态监测方法 被引量:8

State monitoring of complex electromechanical system based on integrated entropy of KPCA
下载PDF
导出
摘要 针对传统KPCA方法的模型参数选取对经验知识依赖程度过高、容易造成漏报和误报的缺点,提出一种基于集成熵核主成分分析的状态监测方法。该方法将传统的KPCA与信息熵结合,在高维空间用信息测度确定模型参数,用Renyi熵贡献提取核主成分,通过构造综合统计量进行状态监测。在TE过程和某企业的压缩机组系统上的仿真研究表明,所提方法较传统KPCA有更好的非线性数据处理能力和更高的故障或异常检测精度。 Aiming at the problem that the conventional Kernel Principle Component Analysis (KPCA) approaches de- pended on experiences to select parameters too much, a state monitoring method based on integrated entropy of KP- CA was proposed, which combined conventional KPCA with the information entropy to determine the parameters by information measuring in the high dimensional space. The kernel principal component was extracted with Renyi en- tropy estimator. Operating state was monitored by forming synthesis statistics variables. The simulation on the TE process and the compressor system of a enterprise were applied to prove the better capability of processing nonlinear data and the more accuracy rate on detecting the fault or abnormal of the proposed approach comparing with conven- tional methods of KPCA.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2015年第5期1327-1333,共7页 Computer Integrated Manufacturing Systems
基金 国家科技支撑计划资助项目(2012BAF12B04)~~
关键词 状态监测 核主成分分析 RENYI熵 特征提取 status monitoring kernel principal component analysis Renyi entropy feature extraction
  • 相关文献

参考文献8

  • 1KPISHANA P. Applications of multivariate analysis tech- niques for fault dectection, diagnosis and isolation[D]. Singa- pore:National University of Singapore, 2011.
  • 2邓晓刚,田学民.一种基于KPCA的非线性故障诊断方法[J].山东大学学报(工学版),2005,35(3):103-106. 被引量:27
  • 3ZHANG Y, MA C. Fault diagnosis of nonlinear processes u- sing multiscale KPCA and multiscale KPLS[J]. Chemical Engi- neering Science, 2011,66(1) : 64-72.
  • 4PRINCIPE C. Information theoretic learning: renyi's entropy and kernel perspectives[-M3. New York, N. Y. , USA.-Springer- Verlag, 2010 : 47-88.
  • 5CHOI S W, LEE C, LEE J M, et al. Fault detection and identifi- cation of nonlinear processes based on kernel PCA:J]. Chemomet- rics and Intelligent Laboratory Systems, 2005,75 (1) : 55-67.
  • 6ZVOKELJ M, ZUPAN S, PREBIL I. Non-linear multivariate and multiscale monitoring and signal denoising strategy using kernel principal component analysis combined with ensemble empirical mode decomposition method[J]. Mechanical Systems and Signal Processing,2011,25(7) :2631-2653.
  • 7SIMOGLOU A, MARTIN E B, MORRIS A J. Statistical per- formance monitoring of dynamic multivariate processes using state space modeling[J]. Computers :y. Chemical Engineering, 2002,26(6) :909-920.
  • 8DOWNS J J, VOGEL E F. A plant-wide industrial process control problem FJ]. Computers : Chemical Engineering, 1993,17(3) :245-255.

二级参考文献5

  • 1MILETIC I, QUINN S, DUDZIC M, et al. An industrial perspective on implementing online applications of multivariate statistics[J]. Journal of Process Control, 2004, 14(8): 821-836.
  • 2DONG D, MCAVOY T J. Nonlinear principal component analysis based on principal curves and neural networks [ J ]. Computers and Chemical Engineering, 1996, 20(1): 65-78.
  • 3SCHOLKOPF B, SMOLA A, MULLER K R. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998, 10(5): 1299-1319.
  • 4LEE J M, YOO C K, CHOI S W, et al. Nonlinear process monitoring using kernel principal component analysis [J].Chemical Engineering Science, 2004, 59( 1 ): 223-234.
  • 5LEE J M, YOO C K, LEE I B. Fault detection of batch processes using multiway kernel principal component analysis[J].Computers and Chemical Engineering, 2004, 28 ( 9 ): 1837-1840.

共引文献26

同被引文献63

引证文献8

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部