摘要
The nanocrystalline Fe64Ni36 thin films were prepared by molecular-beam- vapor deposition under different magnetic flux densities. The microstructure and magnetic properties of thin films were examined by AFM, TEM, HRTEM and VSM. The results show that with the increase of magnetic flux densities, the changing trend of the average particle size is the same as the coercive force except 6 T. Under 6 T condition, the thin film became the mixture of bcc and fcc phases, which leads to slight increase of the coercive force. In addition, the HRTEM result shows the short-range ordered clusters (embryos) or nucleation rate of thin films increase with increasing magnetic flux densities.
The nanocrystalline Fe64Ni36 thin films were prepared by molecular-beam- vapor deposition under different magnetic flux densities. The microstructure and magnetic properties of thin films were examined by AFM, TEM, HRTEM and VSM. The results show that with the increase of magnetic flux densities, the changing trend of the average particle size is the same as the coercive force except 6 T. Under 6 T condition, the thin film became the mixture of bcc and fcc phases, which leads to slight increase of the coercive force. In addition, the HRTEM result shows the short-range ordered clusters (embryos) or nucleation rate of thin films increase with increasing magnetic flux densities.