期刊文献+

Designed synthesis of cobalt-oxide-based nanomaterials for superior electrochemical energy storage devices 被引量:6

Designed synthesis of cobalt-oxide-based nanomaterials for superior electrochemical energy storage devices
原文传递
导出
摘要 钴氧化物,例如公司 < 潜水艇 class= “ a-plus-plus ” > 3 </sub > O < 潜水艇 class= “ a-plus-plus ” > 4 </sub> 并且咕咕叫,接受了由于他们的高理论的能力为可充电的锂离子电池(解放) 作为潜在的阳极材料增加注意。Nanostructure 工程作为一条有效途径被表明了为解放改进电极材料的电气化学的表演。在这评论,我们在各种各样的钴的合理设计和制造总结最近的开发基于氧化物的 nanomaterials 和他们的锂存储表演包括 1D nanowires/belts, 2D nanosheets, 3D 空 / 层次的结构,有碳(非结晶的碳,碳 nanotubes 和 graphene ) 的混合 nanostructures 并且混合了金属氧化物。由在他们的电气化学的表演上集中于他们的结构的效果,为钴氧化物 / 碳混血儿 nanostructures 的制造的有效策略被加亮。这评论证明由合理设计,如此的 cobalt-oxide-based nanomaterials 作为下一代解放阳极很有希望。 Cobalt oxides, such as C0304 and CoO, have received increasing attention as potential anode materials for rechargeable lithium-ion batteries (LIBs) owing to their high theoretical capacity. Nanostructure engineering has been demonstrated as an effective approach to improve the electrochemical performance of electrode materials for LIBs. In this review, we summarize recent developments in the rational design and fabrication of various cobalt oxide-based nanomaterials and their lithium storage performance, including 1D nanowires/belts, 2D nanosheets, 3D hollow/hierarchical structures, hybrid nanostructures with carbon (amorphous carbon, carbon nanotubes and graphene) and mixed metal oxides. By focusing on the effects of their structure on their electrochemical performance, effective strategies for the fabrication of cobalt oxide/carbon hybrid nanostructures are highlighted. This review shows that by rational design, such cobalt-oxide-based nanornaterials are very promising as next generation LIB anodes.
出处 《Nano Research》 SCIE EI CAS CSCD 2015年第2期321-339,共19页 纳米研究(英文版)
关键词 电化学性能 纳米材料 钴氧化物 设计合成 储存装置 混合金属氧化物 锂离子电池 能量 lithium ion battery,hybrid,peapod structure,graphene
  • 相关文献

参考文献4

二级参考文献81

  • 1Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 2008, 47, 2930-2946.
  • 2Fan, Y.; Huang, K.; Zhang, Q.; Xiao, Q. Z.; Wang, X. X.; Chen, X. D. Novel silicon-nickel cone arrays for high performance LIB anodes. J. Mater. Chem. 2012, 22, 20870-20873.
  • 3Xu, J. J.; Wu, H. Y.; Wang, F.; Xia, Y. Y.; Zheng, G. F. Zn4Sb3 nanotubes as lithium ion battery anodes with high capacity and cycling stability. Adv. Energy Mater., in press, DOI: 10.1002/aenm.201200564.
  • 4Lahann, J. Environmental nanotechnology: Nanomaterials clean up. Nat. Nanotechnol. 2008, 3, 320-321.
  • 5Xie, X. W.; Li, Y.; Liu, Z. Q.; Haruta, M.; Shen. W. J. Low- temperature oxidation of CO catalysed by CO304 nanorods. Nature 2009, 458, 746-749.
  • 6Chert, J.; Xu, L. N.; Li, W. Y.; Gou, X. L. a-FezO3 nanotubes in gas sensor and lithium-ion battery applications. Adv. Mater. 2005, 17, 582-586.
  • 7Lai, X. Y.; Li, J.; Korgel, B. A.; Dong, Z. H.; Li, Z. M.; Su, F. B.; Du, J.; Wang, D. General synthesis and gas-sensing properties of multi-shell metal oxide hollow microspheres. Angew. Chem. Int. Ed. 2011, 50, 2738-2741.
  • 8Mao, D.; Yao, J. X.; Lai, X. Y.; Yang, M.; Du, J. A.; Wang, D. Hierarchically mesoporous hematite microspheres and their enhanced formaldehyde-sensing properties. Small 2011, 7, 578-582.
  • 9Wang, G. M.; Ling, Y. C.; Wheeler, D. A.; George, K. E. N.; Horsley, K.; Heske, C.; Zhang, J. Z.; Li, Y. Facile synthesisof highly photoactive a-Fe203-based films for water oxidation. Nano Lett. 2011, 11, 3503-3509.
  • 10Hochbaum, A. I.; Yang, P. D. Semiconductor nanowires for energy conversion. Chem. Rev. 2010, 110, 527-546.

共引文献51

同被引文献31

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部