期刊文献+

Three-dimensional porous V2O5 hierarchical octahedrons with adjustable pore architectures for long-life lithium batteries 被引量:9

Three-dimensional porous V2O5 hierarchical octahedrons with adjustable pore architectures for long-life lithium batteries
原文传递
导出
摘要 三维(3D ) 多孔的 V < 潜水艇 class= “ a-plus-plus ” > 2 </sub > O < 潜水艇 class= “ a-plus-plus ” > 5 </sub> 八面体成功地被制作了经由一固态刚准备的铵钒氧化物(AVO ) 的变换过程八面体。AVO 八面体的形成是盖住试剂和生长种类的赞成过度饱和的选择吸附的结果。随后, 3D 多孔的 V < 潜水艇 class= “ a-plus-plus ” > 2 </sub > O < 潜水艇 class= “ a-plus-plus ” > 5 </sub> 八面体被 AVO 八面体的简单 thermolysis 经由一个锻烧处理获得。作为为锂电池的阴极材料,多孔的 V < 潜水艇 class= “ a-plus-plus ” > 2 </sub > O < 潜水艇 class= “ a-plus-plus ” > 5 </sub> 八面体阴极在西班牙的北方展出 96 mAsga 盆的一个能力;并且(3 ) Zpy (n ?=? 17 ) , LV 质量从 226 被减少[178;306 ] g 到 220 [169;254 ] g (p ?=? 0.007 ) 在 13 点 ? 桴 ? 畦摮浡湥慴? 牦煥敵据敩 ? 景琠敨猠摥浩湥獴? 敢楳敤琠敨氠湯楧畴楤慮? 湡 ? 牴湡癳牥敳映湵慤敭瑮污映敲畱湥楣獥漠 ? 慥档戠極摬湩 ? 慢敳 ? 湯琠敨愠灭楬畴敤猠数瑣慲愠摮琠敨映潬牯猠数瑣慲? 慲楴?? 剓? 敭桴摯? Three-dimensional (3D) porous V2O5 octahedrons have been successfully fabricated via a solid-state conversion process of freshly prepared ammonium vanadium oxide (AVO) octahedrons. The formation of AVO octahedrons is a result of the selective adsorption of capping reagents and the favourable supersaturation of growth species. Subsequently, 3D porous V2O5 octahedrons were obtained by simple thermolysis of the AVO octahedrons via a calcination treatment. As cathode material for lithium batteries, the porous V2O5 octahedron cathode exhibits a capacity of 96 mAh·g^-1 at high rate up to 2 A·g^-1 in the rang of 2.4 4 V and excellent cyclability with little capacity loss after 500 cycles, which can be ascribed to its high specific surface area and tunable pore architecture. Importantly, this facile solid-state thermal conversion strategy can be easily extended to controllably fabricate other porous metal oxide micro/nano materials with specific surface textures and morphologies.
出处 《Nano Research》 SCIE EI CAS CSCD 2015年第2期481-490,共10页 纳米研究(英文版)
关键词 孔隙结构 V2O5 八面体 锂电池 多孔 三维 可调 长寿命 V2O5 octahedron,adjustable pore,long-life lithium battery
  • 相关文献

参考文献65

  • 1Kang, B.; Ceder, G. Battery materials for ultrafast charging and discharging. Nature 2009, 458, 190 193.
  • 2Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451,65257.
  • 3Zu, C. X.; Li, H. Thermodynamic analysis on energy densities of batteries. Energy Environ. Sci. 2011, 4, 2614-2624.
  • 4Winter, M.; Besenhard, J. O.; Spahr, M. E.; Nov/k, P. Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 1998, 10, 725 763.
  • 5Liu, G. Q.; Wen, L.; Liu, Y. M. Spinel LiNi0.sMnl.504 and its derivatives as cathodes for high-voltage Li-ion batteries. .Z Solid State Electrochem. 2010, 14, 2191-2202.
  • 6Zhang, C. Z.; Mahmood, N.; Yin, H.; Liu, F.; Hou, Y. L. Synthesis of phosphorus-doped graphene and its multifunc- tional applications for oxygen reduction reaction and lithium ion batteries. Adv. Mater. 2013, 25, 4932-4937.
  • 7Yang, S. B.; Cui, G. L.; Pang, S. P.; Cao, Q.; Kolb, U.; Feng, X. L.; Maier, J.; Miillen, K. Fabrication of cobalt and cobalt oxide/graphenc composites: Towards high-pcrformance anode materials for lithium ion batteries. ChemSusChem 2010, 3, 23(239.
  • 8Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 2004, 104, 4271-4302.
  • 9Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587-603.
  • 10Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367.

同被引文献47

引证文献9

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部